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Abstract

Novel integral formulae for harmonic functions in rectangular do-
mains are presented. This representations are analytic in the complex
C−plane, displaying strong decay as the complex variable tends to in-
finity and are therefore suitable for numerical computations and asymp-
totic analysis of the solution. The analysis is based on the new method
introduced by Fokas and his collaborators, yielding novel formulae even
for simple problems that can be solved by the method of the classi-
cal transforms. This is achieved by implementing the global relation,
which is an integral relation connecting the boundary values of the so-
lution with the normal derivative of the solution on the boundary, in
appropriate subdomains of the fundamental domain. Furthermore, a
changing-type boundary value problem is solved.
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1 Introduction

In most cases, a given, well-posed, boundary-value problem can be solved by
means of separation of variables, if there exist a coordinate system that fits the
boundary of the fundamental domain and at the same time it separates the
partial differential equation (PDE). Furthermore, separation of variables leads
to the solution of PDE’s by a transform pair, to which the ”prototype” is the
Fourier transform. However, for complicated problems the classical transform
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method fails. For example, there do not exist proper transforms for solving
many boundary-value problems for elliptic equations of second order and in
simple domains.
Within the last decade, A.S. Fokas proposed a general method, known as the
generalized transform method, for solving boundary-value problems for two-
dimensional linear and integrable nonlinear PDE’s and it is presented in [4].
An equation in two dimensions (x1, x2) is called integrable if it can be ex-
pressed as the condition that a certain differential 1-form W (x1, x2; k), k ∈ C,
is closed, e.g. linear PDE’s with constant coefficients. This approach can be
seen as a generalization of the separation of variables method, but more effec-
tively (an overview is provided in [1,2]). The generalized transform method
does not depend on the geometry of the domain at hand, but on the linearity of
the PDE and constructs the solutions without the need of using eigenfunction
expansions, arriving at separable solutions without actually assuming separa-
tion [3]. The novelty of the Fokas method lies in the fact that it is not based
on the existence of a ”classical” transform pair and therefore is applicable even
in the case where classical transforms do not exist. Moreover, if a given BVP
can be solved by a classical transform, the new method provides an alternative
approach deriving this transform and also yields two kind of novel integral
representations in the complex C−plane, one of which is useful for solving
changing type BVP’s and the other, involving a strong decay as the complex
variable involved tends to ∞, is suitable for numerical computations and for
the study of the asymptotic properties of these solutions [5]. The key feature
of this methodology lies in the successful manipulation of the so-called global
relation, a formula connecting the solution of the BVP with its derivatives on
the boundary. In order to obtain the global relation, the given PDE in con-
nection with the formal adjoint associated with the PDE, is re-formulated as a
divergence form. Employing then Green’s second identity yields immediately
the global relation. This procedure, as a ”side effect”, also implies a Lax pair
formulation. The elimination of the unknown boundary values is possible by
using the global relation and its invariant forms, which are introduced via the
separation ”constant” in domains which are separable.
The article is organized in a number of sections as follows. In section 2 the
problem is formulated. In the sequence, in order to fix notation and termi-
nology, the classical transform is given, which is then rederived in section 5,
by means of the analysis of the global relation. In sections 6-8, the main re-
sults of the article are presented, where alternative formulae for the solution
in terms of an integral instead of a series are derived. This is realized by al-
gebraic manipulation of the global relation in appropriate subdomains. The
integral representations presented are analytic in the complex k−plane, with
strong decay as k → ∞, and therefore suitable for numerical computations
and asymptotic analysis of the solution. Moreover, the machinery introduced
is utilized in section 9 to solve a changing-type boundary value problem (such
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as Dirichlet data on part of the boundary and Neumann data on the comple-
mentary part). In the latter case, one must combine the new method with the
Riemann-Hilbert formulation.

2 Formulation of the Problem

The two dimensional Laplace equation in Cartesian coordinates, namely

( ∂2

∂x2
+

∂2

∂y2

)
q(x, y) = 0, (x, y) ∈ Ω , (1)

in the interior Ω of a square defined by

Ω =
{
− L ≤ x ≤ L, −L ≤ y ≤ L

}
(2)

and depicted in Figure 1, where q(x, y) is a real valued function, is investigated.

Figure 1: The domain Ω =
{− L ≤ x ≤ L, −L ≤ y ≤ L

}
We analyze the general Dirichlet problem

q(L, y) = f
(1)
D (y), q(x,−L) = f

(2)
D (x),

q(−L, y) = f
(3)
D (y), q(x, L) = f

(4)
D (x) (3)

which, after a suitable parametrization, becomes

q(j)(s) = f
(j)
D (s), s ∈ [−L,L], j = 1, 2, 3, 4 , (4)
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where (j) corresponds to the j−th side of the square.

We assume that the functions f
(j)
D are smooth and compatible at the corners

of the square. The general Neumann problem can be treated in the same man-
ner, where, furthermore, the Neumann data have to satisfy the compatibility
condition

∮
∂Ω

(
−∂q

∂y
dx +

∂q

∂x
dy

)
= 0 ,

and ∂Ω is the boundary of the domain.
Throughout the analysis presented, emanating from the linearity of the Lapla-
cian operator, the fact that the solution q(x, y) can be written as a linear
combination of ”partial solutions” qj(x, y), corresponding to specific subprob-
lems, namely particular boundary conditions, is applied.

3 The Classical Transform

When we apply the classical transform we assume the solution expanded in a
series of eigenfunctions of one of the variables, with the coefficient depending
upon the other variable. Separation of variables relies upon the completeness
of the eigenfunctions corresponding to one of the variables. The solution will
depend on functions which enter into the boundary conditions, and since the
spatial domain Ω is rectangular, the relative eigenfunctions are trigonometric.
Furthermore, every function can be written uniquely as the sum of an even
and an odd function, or in terms of a Fourier expansion, every function, satis-
fying Dirichlet’s conditions, which enters into the boundary conditions can be
written as

f(s) ∼
∑

n

[
αn sin

(
nπ
L

s
)

+ βn cos
( (

n + 1
2

)
π
L
s
)]

, s ∈ [−L,L] (5)

where the set S = {1} ∪ {sin nπ
L

s, n ∈ Z − {0}} ∪ {cos (n + 1
2
) π

L
s, n ∈ Z} form

a complete orthogonal basis of L2[−L,L].

Proposition 3.1 Let the real valued function q(x, y) satisfy the Laplace
equation (1) in the domain Ω defined in (2), with boundary conditions (4),

where the given functions f
(j)
D (s), j = 1, 2, 3, 4 have sufficient smoothness and

are continuous at the vertices. Then the classical representation for the solution
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is given by

q(x, y) =
∞∑

n=1

[
an sinh

(
nπ
L

(x + L)
)

+ cn sinh
(

nπ
L

(x − L)
)]

sin
(

nπ
L

y
)

+
∞∑

n=0

[
bn sinh

( (
n + 1

2

)
π
L
(x + L)

)
+ dn sinh

( (
n + 1

2

)
π
L
(x − L)

)]

× cos
( (

n + 1
2

)
π
L
y
)

+

∞∑
n=1

[
en sinh

(
nπ
L

(y − L)
)

+ gn sinh
(

nπ
L

(y + L)
)]

× sin
(

nπ
L

x
)

+

∞∑
n=0

[
fn sinh

( (
n + 1

2

)
π
L
(y − L)

)
+ hn sinh

( (
n + 1

2

)
π
L
(y + L)

)]

× cos
( (

n + 1
2

)
π
L
x
)

, (6)

where, by introducing a intrinsic coordinate system (T̂, N̂) on each side of the
square, the Fourier coefficients an, bn, cn, dn, en, fn, gn and hn can be expressed
as follows

an =
1

L sinh(2nπ)

∫ L

−L

f
(1)
D (s) sin

(
nπ
L

s
)

ds (7)

bn =
1

L sinh(2n + 1)π

∫ L

−L

f
(1)
D (s) cos

( (
n + 1

2

)
π
L
s
)

ds (8)

cn =
1

L sinh(2nπ)

∫ L

−L

f
(3)
D (−s) sin

(
nπ
L

s
)

ds (9)

dn = − 1

L sinh(2n + 1)π

∫ L

−L

f
(3)
D (−s) cos

( (
n + 1

2

)
π
L
s
)

ds (10)

en = − 1

L sinh(2nπ)

∫ L

−L

f
(2)
D (s) sin

(
nπ
L

s
)

ds (11)

fn = − 1

L sinh(2n + 1)π

∫ L

−L

f
(2)
D (s) cos

( (
n + 1

2

)
π
L
s
)

ds (12)

gn = − 1

L sinh(2nπ)

∫ L

−L

f
(4)
D (−s) sin

(
nπ
L

s
)

ds (13)

hn =
1

L sinh(2n + 1)π

∫ L

−L

f
(4)
D (−s) cos

( (
n + 1

2

)
π
L
s
)

ds . (14)

4 Analysis of the Global Relation

Let q(x, y) and q(x, y) satisfy the Laplace equation( ∂2

∂x2
+

∂2

∂y2

)
q(x, y) = 0 , (15)
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and the formal adjoint of the Laplace equation( ∂2

∂x2
+

∂2

∂y2

)
q(x, y) = 0 . (16)

Multiplying (15) by q(x, y) and (16) by q(x, y) and subtracting them, we obtain
the divergence form

∂

∂x

(
q

∂q

∂x
− q

∂q

∂x

)
+

∂

∂y

(
q

∂q

∂y
− q

∂q

∂y

)
= 0 . (17)

Equation (17) holds true everywhere in R2 and applying Green’s theorem to a
closed subdomain of R2, yields∫

C

[(
q

∂q

∂x
− q

∂q

∂x

)
dy +

(
q

∂q

∂y
− q

∂q

∂y

)
dx

]
= 0 , (18)

where C is the boundary of the subdomain.
Equation (18) provides the global relation, since it relates the boundary values
of the solution with the values of the normal derivatives of the solution on the
boundary.
Letting q(x, y; k) = X(x; k)Y (y; k) where k is the complex separation constant,
it follows that X(x; k) and Y (y; k) satisfy the ODE’s

X
′′

+ k2 X = 0

Y
′′ − k2 Y = 0

}
, k ∈ C ,

where the prime denotes differentiation with respect to the argument.
Solving above equations yields q(x, y) = e±ı̇kx eσky, where σ = ±1. Then,
equations (17) and (18) become

∂

∂x

(
e±ı̇kx eσky

(
±ı̇kq − ∂q

∂x

))
+

∂

∂y

(
e±ı̇kx eσky

(
σkq − ∂q

∂y

))
= 0 (19)

and ∫
C

e±ı̇kx eσky

[(
±ı̇kq − ∂q

∂x

)
dy −

(
σkq − ∂q

∂y

)
dx

]
= 0, (20)

respectively. Equations (19) imply two items. First, applying Green’s theorem
we obtain immediately the global relation, and second it yields a Lax pair
formulation.
Indeed, if q(x,y) is the solution of the Laplace equation in a closed subdomain
Ω ⊂ R2, then (19) implies the existences of a function Ξ(x, y; k), such that

∂
∂y

Ξ = e±ı̇kx eσky
(± ı̇kq − ∂q

∂x

)
∂
∂x

Ξ = −e±ı̇kx eσky
(
σkq − ∂q

∂y

)
}

, k ∈ C .
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The assumption Ξ(x, y; k) = e±ı̇kx eσky μ(x, y; k) where μ(x, y; k) an auxiliary
function, leads right away to the Lax pairs(

∂

∂y
+ σk

)
μ = ±ı̇kq − ∂q

∂x
,(

∂

∂x
± ı̇k

)
μ =

∂q

∂y
− σkq .

Furthermore, (19) implies that if the differential form

W (x, y; k) = e±ı̇kx eσky

{(
±ı̇kq − ∂q

∂x

)
dy −

(
σkq − ∂q

∂y

)
dx

}

is closed, viz

dW (x, y; k) = e±ı̇kx eσky

(
∂2q

∂x2
+

∂2q

∂y2

)
dx ∧ dy = 0 ,

then Stoke’s theorem ∫
∂Ω

W =

∫∫
Ω

dW ,

provides (20).

5 The Classical Representation

To rederive the classical transform (6), apply the global relation (20) in the
subdomains Ω1 and Ω2 defined by

Ω1 =
{
− L ≤ η ≤ x, |y| ≤ L

}
, Ω2 =

{
x ≤ η ≤ L, |y| ≤ L

}
and depicted in Figure 2, with the following boundary conditions

q(L, y) = f
(1)
D (y), q(−L, y) = f

(3)
D (y)

q(η, L) = q(η,−L) = 0, ∂y q(η, L) = ∂y q(η,−L) = 0

}
. (21)

Thus we derive the following equations

∫ L

−L

eσky
(
± ı̇k q1(x, y) − ∂x q1(x, y)

)
dy

= e∓ı̇k(x+L)

∫ L

−L

eσky
(
± ı̇k q(−L, y) − ∂x q(−L, y)

)
dy , (22)
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Figure 2: The subdomains Ω1 ⊂ Ω and Ω2 ⊂ Ω defined as Ω1 = {−L ≤ η ≤
x, |y| ≤ L}, Ω2 = {x ≤ η ≤ L, |y| ≤ L}, respectively.

∫ L

−L

eσky
(
± ı̇kq1(x, y) − ∂x q1(x, y)

)
dy

= e∓ı̇k(x−L)

∫ L

−L

eσky
(
± ı̇k q(L, y) − ∂x q(L, y)

)
dy , (23)

where q1(x, y) the solution corresponding to the specific boundary conditions
(21).

To eliminate the unknown function ∂xq1(x, y), subtract equations (22)+

and (23)−

∫ L

−L

eσkyq1(x, y) dy =
1

2ı̇k

[
eı̇k(x−L)

∫ L

−L

eσky
(
ı̇k q(L, y) + ∂x q(L, y)

)
dy

+ e−ı̇k(x+L)

∫ L

−L

eσky
(
ı̇kq(−L, y) − ∂x q(−L, y)

)
dy

]
, k ∈ C − {0} . (24)

Using boundary conditions (21) and denoting

D(j)(σk) =

∫ L

−L

eσkyf
(j)
D (y)dy, N(j)(σk) =

∫ L

−L

eσkyf
(j)
N (y)dy, j = 1, 3 ,

(25)

where the unknown Neumann boundary values are defined as

∂q

∂n

∣∣∣
x=xmax, xmin

= f
(j)
N (y), j = 1, 3
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and n̂ is the outgoing normal to the boundary, equation (24) rewrites

∫ L

−L

eσkyq1(x, y) dy =
1

2ı̇k

[
eı̇k(x−L)

(
ı̇k D(1)(σk) + N(1)(σk)

)

+ e−ı̇k(x+L)
(
ı̇k D(3)(σk) + N(3)(σk)

)]
, k ∈ C − {0} . (26)

In order to compute the two unknowns N(1)(σk) and N(3)(σk), apply the global
relation (20) in the domain Ω depicted in Figure 1, with boundary conditions
(21) to derive the Dirichlet-to-Neumann correspondence,

e±ı̇kL
(
± ı̇k D(1)(σk) − N(1)(σk)

)
− e∓ı̇kL

(
± ı̇k D(3)(σk) + N(3)(σk)

)
= 0, k ∈ C .

Solving the above system with respect to the unknown Neumann data and
substituting the resulting expressions into (26) we obtain

∫ L

−L

eσkyq1(x, y) dy =
1

eı̇2kL − e−ı̇2kL

[(
eı̇k(x+L) − e−ı̇k(x+L)

)
D(1)(σk)

−
(
eı̇k(x−L) − e−ı̇k(x−L)

)
D(3)(σk)

]
, k ∈ C −

{nπ

2L

}
, n ∈ Z . (27)

Replacing σ = 1 and σ = −1 in the above equation respectively, and perform-
ing simple algebraic manipulations of the resulting two equations, we derive
the relations

∫ L

−L

cosh
sinh

(ky) q1(x, y) dy =
1

sin(2kL)

[
sin
(
k(x + L)

) ∫ L

−L

cosh
sinh

(ky) f
(1)
D (y) dy

− sin
(
k(x − L)

)∫ L

−L

cosh
sinh

(ky) f
(3)
D (y) dy

]
, k ∈ C −

{nπ

2L

}
, n ∈ Z .

(28)

Evaluating equations (28) at k = ı̇(n + 1
2
) π

L
and at k = ı̇nπ

L
, yields the cosine

and sine Fourier transform of q1(x, y), respectively. The inversion formulae
then gives

qc
1(x, y) =

∞∑
n=0

[
bn sinh

( (
n + 1

2

)
π
L
(x + L)

)
+ dn sinh

( (
n + 1

2

)
π
L
(x − L)

)]

× cos
( (

n + 1
2

)
π
L
y
)

, (29)
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Figure 3: The subdomains Ω3 and Ω4 defined as Ω3 = {|x| ≤ L −L ≤ τ ≤ y}
and Ω4 = {|x| ≤ L, y ≤ τ ≤ L}, respectively.

and

qs
1(x, y) =

∞∑
n=1

[
an sinh

(
nπ
L

(x + L)
)

+ cn sinh
(

nπ
L

(x − L)
)]

sin
(

nπ
L

y
)
, (30)

where the Fourier constants an, bn, cn, dn are given by equations (7)-(10).
Analogous, applying the global relation (20)− in the subdomains

Ω3 =
{
|x| ≤ L, −L ≤ τ ≤ y

}
and

Ω4 =
{
|x| ≤ L, y ≤ τ ≤ L

}
,

depicted in Figure 3, with the following boundary conditions

q(x,−L) = f
(2)
D (x), q(x, L) = f

(4)
D (x)

q(L, τ) = q(−L, τ) = 0, ∂x q(L, τ) = ∂x q(−L, τ) = 0

}
. (31)

we find the following equations∫ L

−L

e−ı̇kx
(
σk q2(x, y) − ∂y q2(x, y)

)
dx =

e−σk(y+L)

∫ L

−L

e−ı̇kx
(
σk q(x,−L) − ∂y q(x,−L)

)
dx , (32)

∫ L

−L

e−ı̇kx
(
σk q2(x, y) − ∂y q2(x, y)

)
dx =

e−σk(y−L)

∫ L

−L

e−ı̇kx
(
σk q(x, L) − ∂y q(x, L)

)
dx , (33)
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where q2(x, y) is the solution corresponding to boundary conditions (31). In
order to eliminate the unknown function ∂yq2(x, y), subtract (32) evaluated
for σ = 1 and (33) evaluated for σ = −1

∫ L

−L

e−ı̇kx q2(x, y) dx =
1

2k

[
e−k(y+L)

∫ L

−L

e−ı̇kx
(
σk q(x,−L) − ∂y q(x,−L)

)
dx

+ ek(y−L)

∫ L

−L

e−ı̇kx
(
σk q(x, L) − ∂y q(x, L)

)
dx, k ∈ C − {0} . (34)

Using boundary conditions (31) and denoting

D(j)(−ı̇k) =

∫ L

−L

e−ı̇kxf
(j)
D (x)dx, N(j)(−ı̇k) =

∫ L

−L

e−ı̇kxf
(j)
N (x)dx, j = 2, 4 .

(35)

where the unknown Neumann boundary values are defined as

∂q

∂n

∣∣∣
y=ymin, ymax

= f
(j)
N (x), j = 2, 4

and n̂ is the outgoing normal to the boundary, equation (34) rewrites

∫ L

−L

e−ı̇kxq2(x, y)dx =
1

2k

[
e−k(y+L)

(
kD(2)(−ı̇k) + N(2)(−ı̇k)

)

+ ek(y−L)
(
kD(4)(−ı̇k) + N(4)(−ı̇k)

)]
, k ∈ C − {0} . (36)

To compute the unknowns N(2)(−ı̇k) and N(4)(−ı̇k), apply (20)− in Ω with
boundary conditions (31) to obtain

e−σkL
(
σkD(2)(−ı̇k) + N(2)(−ı̇k)

)
− eσkL

(
σkD(4)(−ı̇k) − N(4)(−ı̇k)

)
= 0,

(37)

Replacing σ = 1 and σ = −1 in (37) respectively, we obtain two equations with
unknowns the Fourier transforms of the Neumann data N(j)(−ı̇k), j = 2, 4.
Solving this system and substituting into (36) yields

∫ L

−L

e−ı̇kx q2(x, y)dx =
1

e2kL − e−2kL

[
− (ek(y−L) − e−k(y−L)

)
D(2)(−ı̇k)

+
(
ek(y+L) − e−k(y+L)

)
D(4)(−ı̇k)

]
, k ∈ C −

{
ı̇
nπ

2L

}
, n ∈ Z . (38)
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Simple algebraic manipulations of the latter equation together with (38) with
k replaced by −k, leads to∫ L

−L

cos
sin

(kx) q2(x, y) dx =
1

sinh(2kL)

[
− sinh

(
k(y − L)

)∫ L

−L

cos
sin

(kx) f
(2)
D (x) dx

+ sinh
(
k(y + L)

)∫ L

−L

cos
sin

(kx) f
(4)
D (x) dx

]
, k ∈ C −

{
ı̇
nπ

2L

}
, n ∈ Z .

(39)

Evaluating equations (39) at k = (n+ 1
2
) π

L
and at k = nπ

L
yields the cosine and

sine Fourier transform of q2(x, y) respectively. The inversion formulae then
implies,

qc
2(x, y) =

∞∑
n=0

[
fn sinh

( (
n + 1

2

)
π
L
(y − L)

)
+ hn sinh

( (
n + 1

2

)
π
L
(y + L)

)]

× cos
( (

n + 1
2

)
π
L
x
)

, (40)

and

qs
2(x, y) =

∞∑
n=1

[
en sinh

(
nπ
L

(y − L)
)

+ gn sinh
(

nπ
L

(y + L)
)]

sin
(

nπ
L

x
)

, (41)

where the Fourier constants en, fn, gn, hn are given by equations (11)-(14).
Adding equations (29),(30),(40) and (41) yields the classical transform (6).

6 Novel Integral Formulae

Proposition 6.1 Let q(x, y) satisfy the Laplace equation (1) in the interior
Ω of the square defined by

Ω =
{
|x| ≤ L, |y| ≤ L

}
,

and with boundary conditions specified in (3). Then q(x, y) admits the follow-
ing integral representation

q(x, y) = − 1

2ı̇π

∫
L

e(y+L)k sin k(x − L)N (3)(k) − sin k(x + L)N (1)(k)

sin 2kL
dk

+
1

2ı̇π

∫
R

e(y−L)k sin k(x + L)M(1)(k) − sin k(x − L)M(3)(k)

sin 2kL
dk

− 1

2π

∫
U

eı̇(x+L)k sinh k(y + L)N (4)(k) − sinh k(y − L)N (2)(k)

sinh 2kL
dk

+
1

2π

∫
D

eı̇(x−L)k sinh k(y + L)M(4)(k) − sinh k(y − L)M(2)(k)

sinh 2kL
dk ,

(42)
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where the functions N (j)(k),M(j)(k), j = 1, 2, 3, 4 are defined as

N (j)(k) =
∑

n

(−1)n

(
α(j)

n

nπ
L

k2 + n2π2

L2

+ β(j)
n

(n + 1
2
) π

L

k2 + (n + 1
2
)2 π2

L2

)
, (43)

M(j)(k) =
∑

n

(−1)n

(
β(j)

n

(n + 1
2
) π

L

k2 + (n + 1
2
)2 π2

L2

− α(j)
n

nπ
L

k2 + n2π2

L2

)
, (44)

for every k ∈ C −
{
±ı̇nπ

L
,±ı̇

(n+
1
2
)π

L

}
, if j = 1, 3 , and

N (j)(k) =
∑

n

(−1)n

(
α(j)

n

nπ
L

k2 − n2π2

L2

+ β(j)
n

(n + 1
2
) π

L

k2 − (n + 1
2
)2 π2

L2

)
, (45)

M(j)(k) =
∑

n

(−1)n

(
α(j)

n

nπ
L

k2 − n2π2

L2

− β(j)
n

(n + 1
2
) π

L

k2 − (n + 1
2
)2 π2

L2

)
, (46)

for every k ∈ C −
{
±nπ

L
,± (n+

1
2
)π

L

}
, if j = 2, 4 . The Fourier coefficients α

(j)
n

and β
(j)
n correlate with the coefficients (7)-(14) as α

(1)
n = sinh 2nπ an, α

(2)
n =

− sinh 2nπ en, α
(3)
n = − sinh 2nπ cn, α

(4)
n = sinh 2nπ gn and β

(1)
n = sinh(2n +

1)π bn, β
(2)
n = − sinh(2n + 1)π fn, β

(3)
n = − sinh(2n + 1)π dn, β

(4)
n = sinh(2n +

1)π hn.
The contours L, R, U and D are obtained by deformation processes described
in the sequence and depicted in Figure 4.

Equation (24), with σ replaced by −1, can be thought as the bilateral
Laplace transform of q1(x, y), provided that the function q1(x, y) is such that
the integral is convergent for some values of k. The inversion formula then
implies

q1(x, y) =
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞

eky

2ı̇k

[
eı̇k(x−L)

∫ L

−L

eσky
(
ı̇k q(L, y) + ∂x q(L, y)

)
dy

+ e−ı̇k(x+L)

∫ L

−L

eσky
(
ı̇kq(−L, y) − ∂x q(−L, y)

)
dy

]
dk ,

(47)

a formula useful for changing-type boundary value problems, as we will see in
section 9.
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Figure 4: The contours L, R, U , D.

But since we are primarily concerned with Dirichlet data prescribed on the
boundary, the inversion of (27) implies

q1(x, y) =
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞

eky

eı̇2kL − e−ı̇ 2kL

[(
eı̇ k(x+L) − e−ı̇ k(x+L)

)
D(1)(−k)

−
(
eı̇ k(x−L) − e−ı̇ k(x−L)

)
D(3)(−k)

]
dk , (48)

where the Dirichlet transforms D(j) are given by equations (25).
Expanding the Dirichlet data f j

D
in a series of the form (5) yields D(j)(−k) =

ekL N (j)(k) + e−kL M(j)(−k), where we note that

N (j)(k), M(j)(k) → 0, as k → ∞ .

Plugging the latter expression into eq. (48) we find

q1(x, y) =
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞
e(y+L)k sin k(x + L)N (1)(k) − sin k(x − L)N (3)(k)

sin 2kL
dk

+
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞
e(y−L)k sin k(x + L)M(1)(k) − sin k(x − L)M(3)(k)

sin 2kL
dk .

(49)

The Laplace transform of the function q1(x, y) displays a rapid decay as k
approaches large values. Indeed, as k → ∞ the denominator eı̇ 2kL − e−ı̇ 2kL is
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dominated by e−ı̇ 2kL for Im k < 0 and by −eı̇ 2kL for Im k > 0. On the other
hand, the nominator eky is bounded in the left (Re k ≤ 0) complex k-plane if
y ∈ [0, L] and in the right (Re k > 0) complex k-plane if y ∈ [−L, 0]. Hence as
k → ∞,

eı̇ k(x+L) − e−ı̇ k(x+L)

eı̇ 2kL − e−ı̇ 2kL
∼
{

eı̇ k(x−L) − e−ı̇ k(x+3L) , Im k < 0

−eı̇ k(x+3L) + e−ı̇ k(x−L) , Im k > 0
, k → ∞ ,

eı̇ k(x−L) − e−ı̇ k(x−L)

eı̇ 2kL − e−ı̇ 2kL
∼
{

eı̇ k(x−3L) − e−ı̇ k(x+L) , Im k < 0

−eı̇ k(x+L) + e−ı̇ k(x−3L) , Im k > 0
, k → ∞ .

Furthermore, the exponentials e(y+L)k and e(y−L)k are bounded in the left (Re <
0) or the right (Re > 0) complex k-plane, respectively.
The aforementioned analysis implies that the Bromwich contour in (49) can
be replaced either by the contour L or by the contour R, depicted in Figure
5. Equation (49) then becomes

q1(x, y) = − 1

2ı̇π

∫
L

e(y+L)k sin k(x − L)N (3)(k) − sin k(x + L)N (1)(k)

sin 2kL
dk

+
1

2ı̇π

∫
R

e(y−L)k sin k(x + L)M(1)(k) − sin k(x − L)M(3)(k)

sin 2kL
dk .

(50)

Figure 5: The contours L and R.

The contour L begins and ends in the left (Re k < 0) complex k−plane, such
that Re k tends to −∞ at each end, a technique known as Talbot’s method
[9]. In Talbot’s method the initial contour is deformed to the region of the
complex k−plane in which the factor ef(k) reduces in magnitude as much as
possible. Analogous, the contour R begins and ends in the right (Re k > 0)
complex k−plane, such that Re k → ∞ at each end.
Similarly, equation (34) can be seen as the Fourier transform of q2(x, y). Thus,
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the inversion formula implies

q2(x, y) =
1

2π

∫ +∞

−∞

eı̇kx

2k

[
e−k(y+L)

∫ L

−L

e−ı̇kx
(
σk q(x,−L) − ∂y q(x,−L)

)
dx

+ ek(y−L)

∫ L

−L

e−ı̇ kx
(
σk q(x, L) − ∂y q(x, L)

)
dx

]
dk ,

(51)

is a relation which will prove valuable for changing-type boundary value prob-
lems.
For Dirichlet data the inversion of (38) yields

q2(x, y) =
1

2π

∫ +∞

−∞

eı̇kx

e2kL − e−2kL

[
− (ek(y−L) − e−k(y−L)

)
D(2)(−ı̇k)

+
(
ek(y+L) − e−k(y+L)

)
D(4)(−ı̇k)

]
dk .

Applying the previous analysis, the above equations yields

q2(x, y) =
1

2π

∫ +∞

−∞
eı̇(x+L)k sinh k(y − L)N (2)(k) − sinh k(y + L)N (4)(k)

sinh 2kL
dk

+
1

2π

∫ +∞

−∞
eı̇(x−L)k sinh k(y + L)M(4)(k) − sinh k(y − L)M(2)(k)

sinh 2kL
dk .

(52)

From (52) it is evident that the Fourier transform of the function q2(x, y)
displays a rapid decay as k approaches large values. Indeed, as k → ∞ the
denominator e2kL − e−2kL is dominated by e−2kl for Re k > 0 and by −e2kl

for Re k < 0. The nominator eı̇ kx on the other hand is bounded in the lower
(Im k < 0) complex k-plane for every x ∈ [−L, 0] and in the upper (Im k > 0)
complex k-plane for every x ∈ [0, L]. Hence as k → ∞,

ek(y−L) − e−k(y−L)

e2kL − e−2kL
∼
{
−ek(y+L) + e−k(y−3L) , Re k < 0

ek(y−3L) − e−k(y+L) , Re k > 0
, k → ∞ ,

ek(y+L) − e−k(y+L)

e2kL − e−2kL
∼
{
−ek(y+3L) + e−k(y−L) , Re k < 0

ek(y−L) − e−k(y+3L) , Re k > 0
, k → ∞ .

More over, the exponentials eı̇(x+L)k and eı̇(x−L)k are bounded in the upper
(Im > 0) or the lower (Im < 0) complex k-plane, respectively.
Thus, the line with endpoints −∞ and +∞ present in (52), can be replaced
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by either the contour U or by the contour D depicted in Figure 6. Hence, (52)
can be rewritten as

q2(x, y) = − 1

2π

∫
U

eı̇ (x+L)k sinh k(y + L)N (4)(k) − sinh k(y − L)N (2)(k)

sinh 2kL
dk

+
1

2π

∫
D

eı̇ (x−L)k sinh k(y + L)M(4)(k) − sinh k(y − L)M(2)(k)

sinh 2kL
dk .

(53)

Figure 6: The contours U and D respectively.

Adding equations (50) and (53) yields (42).

7 A Novel Integral Representation

Proposition 7.1 Suppose that there exist a function q(x, y) with sufficient
smoothness all the way to the boundary, satisfying the Laplace equation (1) in
the interior of the square Ω defined by

Ω =
{
|x| ≤ L, |y| ≤ L

}
,

with Dirichlet boundary conditions prescribed by equations (3). Then the so-
lution q(x, y) admits the following integral representation

q(x, y) =
ı̇

2π

∫ +∞

−∞
eı̇k(x−L)

(
J (y; k) f

(1)
D (τ)

)
dk

+
1

2π

∫ c+ı̇∞

c−ı̇∞
ek(y+L)

(
I(x; k) f

(2)
D (η)

)
dk

− ı̇

2π

∫ +∞

−∞
eı̇ k(x+L)

(
J (y; k) f

(3)
D (τ)

)
dk

− 1

2π

∫ c+ı̇∞

c−ı̇∞
ek(y−L)

(
I(x; k) f

(4)
D (η)

)
dk, k ∈ C , (54)
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where the integral operators I(x; k) and J (y; k) are defined as

I(x; k) =

∫ x

−L

dη eı̇k(η−x) +

∫ L

x

dη e−ı̇k(η−x), k ∈ C , (55)

and

J (y; k) =

∫ y

−L

dτ ek(τ−y) +

∫ L

y

dτ e−k(τ−y), k ∈ C , (56)

respectively.

Employing the global relation (20) in the subdomains Ω3 and Ω4 depicted
in Figure 3, with boundary conditions

q(L, τ) = f
(1)
D (τ), q(x,−L) = q(−L, τ) = q(x, L) = 0

∂y q(x,−L) = ∂x q(−L, τ) = ∂y q(x, L) = 0

}
, (57)

we derive the following equations∫ L

−L

e±ı̇kx
(
σk q1(x, y) − ∂y q1(x, y)

)
dx =

− e±ı̇kL

∫ y

−L

eσk(τ−y)
(
± ı̇kf

(1)
D (τ) − f

(1)
N (τ)

)
dτ , (58)

∫ L

−L

e±ı̇kx
(
σk q1(x, y) − ∂y q1(x, y)

)
dx =

e±ı̇kL

∫ L

y

eσk(τ−y)
(
± ı̇kf

(1)
D (τ) − f

(1)
N (τ)

)
dτ , (59)

where the solution q1(x, y) corresponds to the boundary conditions (57). Re-
place in the former σ = 1 and in the latter σ = −1. Subtracting the resulting
equations, not only eliminates the unknown function ∂y q1(x, y), but also pro-
vides the Fourier transform for the solution q1(x, y),∫ L

−L

e±ı̇kx q1(x, y) dx = −e±ı̇kL

2k
J (y; k)

(
± ı̇kf

(1)
D (τ) − f

(1)
N (τ)

)
, k ∈ C − {0},

(60)

where the integral operator J (y; k) is defined by eq. (56).
The inverse of (60)− gives

q1(x, y) =
1

2π

∫ +∞

−∞
eı̇k(x−L) 1

2k
J (y; k)

(
ı̇kf

(1)
D (τ) + f

(1)
N (τ)

)
dk . (61)
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Eliminating the unknown Neumann boundary data f
(1)
N (τ) in (61), with the

aid of (60)+, we find

q1(x, y) =
ı̇

2π

∫ +∞

−∞
eı̇k(x−L)

(
J (y; k)f

(1)
D (τ)

)
dk

+
1

2π

∫ +∞

−∞
eı̇k(x−L)

{∫ L

−L

eı̇k(x−L)q1(x, y)dx

}
dk . (62)

As k tends to infinity, both ek(τ−y) and e−k(τ−y) tend to zero since τ − y ≤ 0
for τ ∈ [−L, y] and τ − y ≥ 0 for τ ∈ [y, L], respectively. Thus, the integral
operator J (y; k) is bounded as a function of k in the right (Re k ≥ 0) complex
k-plane. Furthermore, since x − L ≤ 0, the exponential eı̇k(x−L) is bounded in
the lower (Im k ≤ 0) complex k-plane.
Assuming the change of the order of integration being permitted, the second
integral appearing on the right-hand side of eq. (62) takes the form∫ +∞

−∞
eı̇k2(x−L) dk . (63)

By deforming the line with endpoints −∞ and +∞ into a contour that begins
and ends in the lower (Im k ≤ 0) complex k-plane, such that Im k → −∞ at
each end, the integral (63) yields a zero contribution since eı̇k(x−L) is analytic
and bounded in Im k ≤ 0.
Hence, (62) becomes

q1(x, y) =
ı̇

2π

∫ +∞

−∞
eı̇k(x−L)

(
J (y; k)f

(1)
D (τ)

)
dk . (64)

Repeating the above procedure in the subdomains Ω3 and Ω4 with boundary
conditions

q(−L, τ) = f
(3)
D (τ), q(L, τ) = q(x,−L) = q(x, L) = 0

∂x q(L, τ) = ∂y q(x,−L) = ∂y q(x, L) = 0 ,

we derive the relation

q3(x, y) = − ı̇

2π

∫ +∞

−∞
eı̇k(x+L)

(
J (y; k)f

(3)
D (τ)

)
dk , (65)

where the solution q3(x, y) corresponds to the specific boundary conditions
described above.
Similar, by applying the global relation (20) in the subdomains Ω1 and Ω2,
depicted in Figure 2, with boundary conditions

q(η,−L) = f
(2)
D (η), q(L, y) = q(−L, y) = q(η, L) = 0

∂x q(L, y) = ∂x q(−L, y) = ∂y q(η, L) = 0

}
, (66)



2280 M. Doschoris

we derive the following equations∫ L

−L

eσky
(
± ı̇k q2(x, y) − ∂x q2(x, y)

)
dy =

e−σkL

∫ x

−L

e±ı̇k(η−x)
(
σkf

(2)
D (η) + f

(2)
N (η)

)
dη , (67)

∫ L

−L

eσky
(
± ı̇k q2(x, y) − ∂x q2(x, y)

)
dy =

− e−σkL

∫ L

x

e±ı̇k(η−x)
(
σkf

(2)
D (η) + f

(2)
N (η)

)
dη , (68)

where the solution q2(x, y) corresponds to the boundary conditions (66). The
unknown function ∂x q2(x, y), is eliminated by adding equations (67)+ and
(68)−

∫ L

−L

eσky q2(x, y) dy =
e−σkL

2ı̇k
I(x; k)

(
σ k f

(2)
D (η) + f

(2)
N (η)

)
, k ∈ C − {0} ,

(69)

where the integral operator I(x; k) is defined by eq. (55).
Evaluate equation (69) for σ = −1 to retrieve the bilateral Laplace transform
for the solution q2(x, y), provided that q2(x, y) is such that the integral is
convergent for some values of k. Then inversion implies the representation

q2(x, y) = − 1

2ı̇π

∫ c+ı̇∞

c−ı̇∞
ek(y+L) 1

2ı̇k
I(x; k)

(
kf

(2)
D (η) − f

(2)
N (η)

)
dk . (70)

The unknown Neumann boundary values f
(2)
N (η) are eliminated with the aid

of (69) evaluated at σ = 1.
Eq. (70) then becomes

q2(x, y) =
1

2π

∫ c+ı̇∞

c−ı̇∞
ek(y+L)

(
I(x; k)f

(2)
D (η)

)
dk

+
1

2ı̇π

∫ c+ı̇∞

c−ı̇∞
ek(y+L)

{∫ L

−L

ek(y+L)q2(x, y)dy

}
dk . (71)

The exponentials appearing in equation (55) are bounded in the lower (Im k ≤
0) complex k-plane. Hence, as k → ∞, the integral operator I(x; k) is bounded
as a function of k in the lower (Im k ≤ 0) complex k-plane. Moreover, as
k → ∞ the exponential ek(y+L) tends to zero in the left (Re k ≤ 0) complex
k-plane.
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Interchanging the order of integration in the second integral appearing on the
right-hand side of eq. (71) we find∫ c+ı̇∞

c−ı̇∞
e2k(y+L) dk . (72)

By deforming the Bromwich line into a contour that begins and ends in the left
(Re k ≤ 0) complex k-plane, such that Re k → −∞ at both ends, the integral
(72) yields a zero contribution.
Hence, (71) yields

q2(x, y) =
1

2π

∫ c+ı̇∞

c−ı̇∞
ek(y+L)

(
I(x; k)f

(2)
D (τ)

)
dk , (73)

An analysis similar to the one described previously, applied in the subdomains
Ω1 and Ω2, with boundary conditions

q(η, L) = f
(4)
D (η), q(L, y) = q(−L, y) = q(η,−L) = 0

∂x q(L, y) = ∂x q(−L, y) = ∂y q(η,−L) = 0

}
, (74)

reveals that

q4(x, y) = − 1

2π

∫ c+ı̇∞

c−ı̇∞
ek(y−L)

(
I(x; k)f

(4)
D (η)

)
dk , (75)

where q4(x, y) is the solution corresponding to the boundary conditions (74).
Finally, adding equations (64), (65), (73) and (75) we obtain (54).

8 Changing-type Boundary Value Problems

The Dirichlet-to-Neumann correspondence, i.e. the global relation imple-
mented at the boundary of the fundamental domain, can be used for the
analysis of problems with changing-type boundary conditions. For example,
consider the following problem

q(L, y) = f
(1)
D (y), y ∈ [−L, 0], ∂x q(L, y) = f

(1)
N (y), y ∈ [0, L] ,

(76)

q(x,−L) = f
(2)
D (x), x ∈ [−L, 0], − ∂y q(x,−L) = f

(2)
N (x), x ∈ [0, L] ,

(77)

q(−L, y) = f
(3)
D (y), y ∈ [−L, 0], − ∂x q(−L, y) = f

(3)
N (y), y ∈ [0, L] ,

(78)

q(x, L) = f
(4)
D (x), x ∈ [−L, 0], ∂y q(x, L) = f

(4)
N (x), x ∈ [0, L] ,

(79)
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where we assume that the functions f
(j)
D and f

(j)
N are smooth and continuous

at the corners of the square and also at the points (0, L), (0,−L), (L, 0) and
(−L, 0).
It is a well known fact that, due to the linearity of the Laplacian operator, the
solution q(x, y) can be written as a linear combination of ”partial solutions”
which correspond to specific boundary conditions. Therefore, implementing
the global relation (20)+, with σ replaced by −1, in the domain Ω depicted in
Figure 1, we obtain the following relation∫ L

−L

e−ky

(
ı̇k q1(L, y) − ∂x q1(L, y)

)
dy = 0 , (80)

where q1(x, y) is a ”partial solution” corresponding to given boundary condi-
tions prescribed on side 1 of the square and zero boundary conditions on the
remaining sides.
Splitting the above integral into one part valid in the interval −L ≤ y ≤ 0 and
a second part valid in the remaining interval and using boundary conditions
(76) we find

ı̇k

∫ L

0

e−ky q1(L, y) dy −
∫ 0

−L

e−ky ∂x q1(L, y) dy =

∫ L

0

e−ky f
(1)
N (y) dy − ı̇k

∫ 0

−L

e−ky f
(1)
D (y) dy . (81)

Introducing the variable z = e−kL, eq. (81) becomes the Riemann-Hilbert
problem

Φ+
1 (z) − Φ−

1 (z) = ϕ1(z), z ∈ C , (82)

where

Φ+
1 (z) = ı̇k

∫ L

0

e−ky q1(L, y) dy, Φ−
1 (z) =

∫ 0

−L

e−ky ∂x q1(L, y) dy , (83)

and ϕ1(z) is the known function

ϕ1(z) =

∫ L

0

e−ky f
(1)
N (y) dy − ı̇k

∫ 0

−L

e−ky f
(1)
D (y) dy . (84)

Note that Φ+
1 (z) is analytic as z tends to zero, where else Φ−

1 (z) is analytic as
z → ∞. Moreover, Φ−

1 (z) → 0 as z → ∞.
Employing the global relation (20)−, with σ replaced by 1, in the domain Ω
depicted in Figure 1, for the ”partial solution” q2(x, y) corresponding to given
boundary conditions prescribed on side 2 of the square and zero boundary
conditions on the remaining sides, we obtain∫ L

−L

e−ı̇kx

(
k q2(x,−L) − ∂y q2(x,−L)

)
dx = 0 . (85)
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Splitting the above integral into two parts and using boundary conditions (77)
we find

k

∫ L

0

e−ı̇kx q2(x,−L) dx −
∫ 0

−L

e−ı̇kx ∂y q2(x,−L) dx =

−
∫ L

0

e−ı̇kx f
(2)
N (x) dx − k

∫ 0

−L

e−ı̇kx f
(2)
D (x) dx . (86)

Introducing the variable z′ = e−ı̇kL, eq. (86) becomes the Riemann-Hilbert
problem

Φ+
2 (z′) − Φ−

2 (z′) = ϕ2(z
′), z′ ∈ C , (87)

where

Φ+
2 (z′) = k

∫ L

0

e−ı̇kx q2(x,−L) dx, Φ−
2 (z′) =

∫ 0

−L

e−ı̇kx ∂y q2(x,−L) dx ,

(88)

and ϕ2(z
′) is the known function

ϕ2(z
′) = −

∫ L

0

e−ı̇kx f
(2)
N (x) dx − k

∫ 0

−L

e−ı̇kx f
(2)
D (x) dx . (89)

Note that Φ+
2 (z′) is analytic as z′ tends to zero, where else Φ−

2 (z′) is analytic
as z′ → ∞. Moreover, Φ−

2 (z′) → 0 as z′ → ∞.
Repeating the above procedures for the sides 3 and 4, one is led to the Riemann-
Hilbert problems

Φ+
3 (z) − Φ−

3 (z) = ϕ3(z), z = e−kL , (90)

and

Φ+
4 (z′) − Φ−

4 (z′) = ϕ4(z
′), z′ = e−ı̇kL , (91)

where

Φ+
3 (z) = ı̇k

∫ L

0

e−ky q3(L, y) dy, Φ−
3 (z) =

∫ 0

−L

e−ky ∂x q3(L, y) dy , (92)

Φ+
4 (z′) = k

∫ L

0

e−ı̇kx q4(x,−L) dx, Φ−
4 (z′) =

∫ 0

−L

e−ı̇kx ∂y q4(x,−L) dx , (93)

and ϕ3(z), ϕ4(z
′) are the known functions

ϕ3(z) = −
∫ L

0

e−ky f
(3)
N (y) dy − ı̇k

∫ 0

−L

e−ky f
(3)
D (y) dy , (94)

ϕ4(z
′) =

∫ L

0

e−ı̇kx f
(4)
N (x) dx − k

∫ 0

−L

e−ı̇kx f
(4)
D (x) dx . (95)
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The scalar Riemann-Hilbert problems (82), (87), (90) and (91) can be solved
in closed form (see [7] and specially Appendix 2 of the reference given, since
the boundary of the fundamental domain Ω is a piecewise smooth contour).
The solution q(x, y) is given by adding equations (47) and (51). Splitting the
integrals on the right-hand side of the resulting equation into two parts and
given boundary conditions (76)-(79), the unknown boundary conditions are
obtained by solving the Riemann-Hilbert problems derived in this section, and
hence the solution q(x, y) is completely determined.

9 Existence of the Integral transforms and the

Inversion formulae

The aforementioned operations are justified introducing the functional space
L1(R) for every function q : R → C exhibiting exponential growth, i.e. equiped
with the property

|q(x)| ≤ C eσ x.

Then [8,6],

Theorem 9.1 (Existence of the Bilateral Laplace Transform) Let q ∈
L1(ε, E), −∞ < ε < E < +∞, belonging to both L1(R; e−σ1 xi) and L1(R; e−σ2 xi).
Then the bilateral Laplace transform Q(x2; k) = BL{q(x1, x2); k} exist and the
integral

Q(x2; k) =

∫ ∞

−∞
e−k x1 q(x1, x2) dx1

is absolutely and uniformly convergent in the strip σ1 < c < σ2

Theorem 9.2 (Inversion formula) Let q(x1, x2), e
−k xi q(x1, x2) ∈ C[ε, E]∩

L1(R), σ1 < c = Re k < σ2. Then the following inversion formula for the bi-
lateral Laplace transformation

q(x1, x2) =
1

2πı̇
lim

R→∞

∫ c+ı̇ R

c−ı̇ R

ek x1 Q(x2; k) dk ,

is valid for every inerval [ε, E] ⊂ R.

Similar conclusions, due do the connection with the (bilateral) Laplace trans-
form, are valid for the Fourier transform.
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