Neighborhoods of Certain Classes of Analytic Functions Defined by a Generalized Differential Operator

Araf A. Ali Abubaker and M. Darus

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia
m.afaf48@yahoo.com
*maslina@ukm.my (Corresponding author)

Abstract

Due to some familiar differential operators, we introduce here a generalized differential operator. By means of this operator, we define and investigate two new subclasses. We obtain the coefficient estimates and further study the neighborhood results.

Mathematics Subject Classification: 30C45

Keywords: analytic functions, differential operator, starlike and convex functions, \((n, \delta)\)– neighborhood

1 Introduction

Let \(A(n) \) denote the class of functions \(f(z) \) of the form

\[
f(z) = z - \sum_{k=n+1}^{\infty} a_k z^k, \quad (a_k \geq 0, \ k \in \mathbb{N} \setminus \{1\}, \ n \in \mathbb{N})
\]

which are analytic in the open unit disk \(U = \{z : z \in \mathbb{C}, \ |z| < 1\} \).

To begin with our investigation, we first state some definitions given by Goodman [5] and Ruscheweyh [6]. For any \(f \in A(n) \) and \(\delta \geq 0 \), we define

\[
N_{n,\delta}(f) = \{ g \in A(n) : g(z) = z - \sum_{k=n+1}^{\infty} b_k z^k \text{ and } \sum_{k=n+1}^{\infty} k |a_k - b_k| \leq \delta \}
\]
which is the \((n, \delta)\)-neighborhood of \(f(z)\). For \(e(z) = z\), we see that

\[
N_{n, \delta}(e) = \{ g \in A(n) : g(z) = z - \sum_{k=n+1}^{\infty} b_k z^k \text{and} \sum_{k=n+1}^{\infty} k |b_k| \leq \delta \}.
\]

(1.2)

The subclass \(S_n^*(\gamma)\) of \(A(n)\), is the class of starlike functions of complex order \(\gamma\) satisfying

\[
\Re\{1 + \frac{1}{\gamma} [\frac{zf'(z)}{f(z)} - 1]\} > 0,
\]

\((z \in U, \ \gamma \in C \setminus \{0\})\).

The subclass \(C_n(\gamma)\) of \(A(n)\), is the class of convex functions of complex order \(\gamma\) satisfying

\[
\Re\{1 + \frac{1}{\gamma} \frac{zf''(z)}{f'(z)}\} > 0,
\]

\((z \in U, \ \gamma \in C \setminus \{0\})\).

The classes \(S_n^*(\gamma)\) and \(C_n(\gamma)\) were studied by [1]. Let \(S_n(\gamma, \lambda, \beta)\) denote the subclass of \(A(n)\) consisting of functions \(f\) which satisfy the following inequality

\[
\left| \frac{1}{\gamma} \left[\frac{\lambda z^3 f'''(z) + (1 + 2\lambda) z^2 f''(z) + zf'(z)}{\lambda z^2 f''(z) + zf'(z)} - 1 \right] \right| < \beta,
\]

\((z \in U, \ \gamma \in C \setminus \{0\}, 0 \leq \lambda \leq 1, 0 < \beta \leq 1)\).

Let \(R_n(\gamma, \lambda, \beta)\) denote the subclass of \(A(n)\) consisting of functions \(f\) which satisfy the following inequality

\[
\left| \frac{1}{\gamma} \left[\lambda z^2 f'''(z) + (1 + 2\lambda) zf''(z) + f'(z) - 1 \right] \right| < \beta,
\]

\((z \in U, \ \gamma \in C \setminus \{0\}, 0 \leq \lambda \leq 1, 0 < \beta \leq 1)\).

The class \(S_n(\gamma, \lambda, \beta)\) was studied by [3].

Let \(A\) be class of functions \(f\) of the form \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k\) which are analytic in the open unit disk \(U\). For \(f \in A\), we now define a generalized differential operator as follows

\[
D_{\alpha, \mu}^{\sigma, \rho} f(z) = z + \sum_{k=2}^{\infty} \left[1 + (\alpha \mu k + \alpha - \mu)(k - 1) \right]^\sigma G(\rho, k) a_k z^k
\]
where \(G(\rho, k) = \left(\frac{k + \rho - 1}{\rho} \right) \) and \(\rho \in N_0 \).

When \(\alpha = 0 \) and \(\mu = 0 \) we get the Sălăgean differential operator \[8\], when \(\mu = 0 \) we obtain the differential operator defined by Al-Oboudi \[2\], when \(\sigma = 0 \) we obtain the Ruscheweyh operator \[7\] and when \(\rho = 0 \) we obtain the differential operator defined by Dorina and Halit \[4\]. Due to the popularity of the generalization of operators, many related work has recently been seen in the literature (see examples \[9\]-[13\])

If \(f \in A(n) \) and \(z \in U \), we obtain the power series expansion of the form

\[
D_{\alpha, \mu}^{\sigma, \rho} f(z) = z - \sum_{k=n+1}^{\infty} [1 + (\alpha \mu k + \alpha - \mu)(k - 1)]^\sigma G(\rho, k) a_k z^k. \tag{1.3}
\]

Let \(S_{\alpha, \mu}^{\sigma, \rho}(\gamma, \lambda, \beta, \alpha, \mu) \) denote the subclass of \(A(n) \) consisting of functions \(f \) which satisfy the inequality

\[
\left| \frac{1}{\gamma} \left[\frac{\lambda(z^2 (D_{\alpha, \mu}^{\sigma, \rho} f(z))^n' + (z(D_{\alpha, \mu}^{\sigma, \rho} f(z))')'}{\gamma (z(D_{\alpha, \mu}^{\sigma, \rho} f(z))')' + (1 - \lambda)(D_{\alpha, \mu}^{\sigma, \rho} f(z))')' - 1 \right] \right| < \beta, \tag{1.4}
\]

\((z \in U, \gamma \in C \setminus \{0\}, 0 \leq \lambda \leq 1, 0 < \beta \leq 1)\).

Also, let \(R_{\alpha, \mu}^{\sigma, \rho}(\gamma, \lambda, \beta, \alpha, \mu) \) denote the subclass of \(A(n) \) consisting of \(f \) which satisfy the inequality

\[
\left| \frac{1}{\gamma} [\lambda(z^2 (D_{\alpha, \mu}^{\sigma, \rho} f(z))^n' + (z(D_{\alpha, \mu}^{\sigma, \rho} f(z))')' - 1] \right| < \beta
\]

\((z \in U, \gamma \in C \setminus \{0\}, 0 \leq \lambda \leq 1, 0 < \beta \leq 1)\).

In this paper we obtain the coefficient estimates and the consequent inclusion relationships involving neighborhoods of some analytic functions.

2 Coefficient estimates

In our investigation of the inclusion relations involving \((n, \delta)\)–neighborhoods, we shall require the following theorems.

Theorem 2.1. Let the function \(f \in A(n) \) be defined by (1.1). Then \(f \in S_{\alpha, \mu}^{\sigma, \rho}(\gamma, \lambda, \beta, \alpha, \mu) \) if and only if

\[
\sum_{k=n+1}^{\infty} k\{ (k - 1)(\lambda(k - 2) + 1) + (1 - \lambda)k + \beta |\gamma| (\lambda(k - 2) + 1) \} B_{\sigma, \rho}(\alpha, \mu, k) a_k \leq \beta |\gamma| \tag{2.5}
\]

for

\[
B_{\sigma, \rho}(\alpha, \mu, k) = [1 + (\alpha \mu k + \alpha - \mu)(k - 1)]^\sigma G(\rho, k). \tag{2.6}
\]
Proof: Let $f \in S^\sigma_n(\gamma, \lambda, \beta, \alpha, \mu)$. Then, we have

$$\Re\{ \frac{\lambda(z^2(D_{\alpha,\mu}^\sigma f(z))'' + (z(D_{\alpha,\mu}^\sigma f(z))')'}{\lambda(z(D_{\alpha,\mu}^\sigma f(z))')' + (1 - \lambda)(D_{\alpha,\mu}^\sigma f(z))'} - 1 \} > -\beta |\gamma|, \ z \in U. \quad (2.7)$$

Equivalently

$$- \sum_{k=n+1}^{\infty} k[(k-1)(\lambda(k-2) + 1) + (1 - \lambda)k] \ B_{\sigma,\rho}(\alpha, \mu, k) \ a_k z^{k-1} \ \Re\left\{ 1 - \sum_{k=n+1}^{\infty} k[\lambda(k-2) + 1] \ B_{\sigma,\rho}(\alpha, \mu, k) \ a_k z^{k-1} \right\} \geq -\beta |\gamma|, \ z \in U\quad (2.8)$$

Letting $z \to 1^-$, through the real values, the inequality (2.4) yields the desired condition (2.1).

Conversely, by applying the hypothesis (2.1) and letting $|z| = 1$, we obtain

$$\left| \frac{\lambda(z^2(D_{\alpha,\mu}^\sigma f(z))'' + (z(D_{\alpha,\mu}^\sigma f(z))')'}{\lambda(z(D_{\alpha,\mu}^\sigma f(z))')' + (1 - \lambda)(D_{\alpha,\mu}^\sigma f(z))'} - 1 \right|$$

$$= \left| - \sum_{k=n+1}^{\infty} k[(k-1)(\lambda(k-2) + 1) + (1 - \lambda)k] \ B_{\sigma,\rho}(\alpha, \mu, k) \ a_k z^{k-1} \right|$$

$$\leq \beta |\gamma| \ \left\{ 1 - \sum_{k=n+1}^{\infty} k[\lambda(k-2) + 1] \ B_{\sigma,\rho}(\alpha, \mu, k) \ a_k \right\}$$

$$\sum_{k=n+1}^{\infty} k[\lambda(k-2) + 1] \ B_{\sigma,\rho}(\alpha, \mu, k) \ a_k \ = \beta |\gamma|.$$

Hence, by maximum modulus theorem, we have $f \in S^\sigma_n(\gamma, \lambda, \beta, \alpha, \mu)$. Thus the proof is complete.

Similarly, we can prove the following theorem.

Theorem 2.2. Let the function $f \in A(n)$ be defined by (1.1). Then $f \in R^\sigma_n(\gamma, \lambda, \beta, \alpha, \mu)$ if and only if

$$\sum_{k=n+1}^{\infty} k(k-1)[\lambda(k-1) + 1] \ B_{\sigma,\rho}(\alpha, \mu, k) \ a_k.$$
3 Neighborhoods for the classes $S_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)$ and $R_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)$

Our first inclusion relations involving $(n, \delta) -$ neighborhoods for the Classes $S_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)$ and $R_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)$ given in the following theorems.

Theorem 3.1 If

$$\delta = \frac{\beta |\gamma|}{(n+1)\{n(\lambda(n-1)+1) + (1-\lambda)(n+1) + \beta |\gamma| [\lambda(n-1)+1]\} B_{\sigma,\rho}(\alpha, \mu, n+1)},$$

where $|\gamma| < 1$, then $S_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu) \subset N_{n,\delta}(e)$.

Proof: For $S_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)$, Theorem 2.1 immediately yields

$$(n+1)\{n(\lambda(n-1)+1) + (1-\lambda)(n+1) + \beta |\gamma| [\lambda(n-1)+1]\} B_{\sigma,\rho}(\alpha, \mu, n+1) \sum_{k=n+1}^{\infty} a_k \leq \beta |\gamma|,$$

so that

$$\sum_{k=n+1}^{\infty} a_k \leq \frac{\beta |\gamma|}{(n+1)\{n(\lambda(n-1)+1) + (1-\lambda)(n+1) + \beta |\gamma| [\lambda(n-1)+1]\}},$$

(3.9)

on the other hand, we also find from (2.1) and (3.1) that

$$(n+1) B_{\sigma,\rho}(\alpha, \mu, n+1) \sum_{k=n+1}^{\infty} k a_k \leq \beta |\gamma| + [\lambda(n+1)^2 - n(n+1)\lambda(n-1)+1] - \beta |\gamma| \{(n+1)(\lambda(n-1)+1)\} B_{\sigma,\rho}(\alpha, \mu, n+1) \sum_{k=n+1}^{\infty} a_k$$

$$\leq \frac{(n+1)^2 \beta |\gamma|}{[(n+1)\{n(\lambda(n-1)+1) + (1-\lambda)(n+1)\} + \beta |\gamma| (n+1)(\lambda(n-1)+1)] B_{\sigma,\rho}(\alpha, \mu, n+1)}.$$

Thus

$$\sum_{k=n+1}^{\infty} k a_k \leq \frac{(n+1) \beta |\gamma|}{[(n+1)\{n(\lambda(n-1)+1) + (1-\lambda)(n+1)\} + \beta |\gamma| (n+1)(\lambda(n-1)+1)]} B_{\sigma,\rho}(\alpha, \mu, n+1).$$

Thus, by the definition given by (1.2), $f \in N_{n,\delta}(e)$ which completes the proof.

Similarly, by applying Theorem 2.2 instead of Theorem 2.1. We can prove the following.
Theorem 3.2 If

\[\delta = \frac{\beta |\gamma|}{n(n+1)(\lambda n + 1)} \]

where \(|\gamma| < 1\), then \(R_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu) \subset N_{n,\delta}(e)\).

4 Neighborhoods properties for the classes \(S_{n}^{\sigma,\rho,\eta}(\gamma, \lambda, \beta, \alpha, \mu)\) and \(R_{n}^{\sigma,\rho,\eta}(\gamma, \lambda, \beta, \alpha, \mu)\)

In this section, we define the subclasses \(S_{n}^{\sigma,\rho,\eta}(\gamma, \lambda, \beta, \alpha, \mu)\) and \(R_{n}^{\sigma,\rho,\eta}(\gamma, \lambda, \beta, \alpha, \mu)\) of \(A(n)\) and neighborhoods of these classes are obtained.

A function \(f \in A(n)\) is said to be in the class \(S_{n}^{\sigma,\rho,\eta}(\gamma, \lambda, \beta, \alpha, \mu)\) if there exists a function \(h \in S_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)\) such that

\[\left| \frac{f(z)}{h(z)} - 1 \right| < 1 - \eta, \quad (z \in U, \ 0 \leq \eta < 1) \quad (4.10) \]

also a function \(f \in R_{n}^{\sigma,\rho,\eta}(\gamma, \lambda, \beta, \alpha, \mu)\) if there exists a function \(h \in R_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)\) such that the inequality (4.1) holds true.

Theorem 4.1 If \(h \in S_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)\) and

\[\eta = 1 - \frac{\delta[(n+1)\{n(\lambda(n-1)+1)+(1-\lambda)(n+1)\}+\beta|\gamma|(n+1)\lambda(n+1)\}]}{(n+1)\{(n+1)\{n(\lambda(n-1)+1)+(1-\lambda)(n+1)\}+\beta|\gamma|(n+1)\lambda(n+1)\}+\beta|\gamma|(n+1)(\lambda(n+1)\}]} \quad (4.11) \]

then \(N_{n,\delta}(h) \subset S_{n}^{\sigma,\rho,\eta}(\gamma, \lambda, \beta, \alpha, \mu)\).

Proof: Let \(f \in N_{n,\delta}(h)\). Then

\[\sum_{k=n+1}^{\infty} k|a_{k} - b_{k}| \leq \delta, \]

which readily implies the coefficient inequality

\[\sum_{k=n+1}^{\infty} |a_{k} - b_{k}| \leq \frac{\delta}{n+1}, \quad n \in N; \]

since \(h \in S_{n}^{\sigma,\rho}(\gamma, \lambda, \beta, \alpha, \mu)\), we have from equation (3.1)

\[\sum_{k=n+1}^{\infty} b_{k} \leq \frac{\beta |\gamma|}{(n+1)\{n(\lambda(n-1)+1)+(1-\lambda)(n+1)\}+\beta|\gamma|(n+1)(\lambda(n+1)+1)} \quad (4.12) \]
so that

\[\left| \frac{f(z)}{h(z)} - 1 \right| < \frac{\sum_{k=n+1}^{\infty} |a_k - b_k|}{1 - \sum_{k=n+1}^{\infty} b_k} \]

\[\leq \frac{\delta}{n + 1} \cdot \frac{[(n + 1)\{n(\lambda(n - 1) + 1) + (1 - \lambda)(n + 1)\} + \beta |\gamma| ((n + 1)(\lambda(n - 1) + 1))]}{[(n + 1)\{n(\lambda(n - 1) + 1) + (1 - \lambda)(n + 1)\} + \beta |\gamma| ((n + 1)(\lambda(n - 1) + 1)) - \beta |\gamma|]}

= 1 - \eta \]

which completes the proof of Theorem 4.1.

Similarly, we can prove the following theorem.

Theorem 4.2 If \(h \in R_{n}^{\sigma, \rho}(\gamma, \lambda, \beta, \alpha, \mu) \) and

\[\eta = 1 - \frac{\delta n(n + 1)(\lambda n + 1)}{(n + 1)\{n(n + 1)(\lambda n + 1) - \beta |\gamma|\}}, \]

then \(N_{n, \delta}(h) \subset R_{n}^{\sigma, \rho, \eta}(\gamma, \lambda, \beta, \alpha, \mu) \).

Acknowledgement: This work is partially supported by UKM-ST-06-FRGS0107-2009, MOHE Malaysia.

References

Received: July, 2010