Generalised Growth Properties of Composite Entire and Meromorphic Functions

Sanjib Kumar Datta

Department of Mathematics
University of North Bengal
Darjeeling, Pin-734013, West Bengal, India
sk_datta_nbu@yahoo.co.in

Santonu Savapondit

Department of Mathematics
Sikkim Manipal Institute of Technology
Majitar, Pin - 737136, Sikkim, India
sspondit@yahoo.co.in

Abstract

In this paper we study the generalised growth properties of composite entire and meromorphic functions using the generalised order and generalised lower order improving some earlier results.

Mathematics Subject Classification: 30D35, 30D30

Keywords: Entire and meromorphic function, generalised order, generalised lower order, composition, growth

1 Introduction, Notations and Definitions.

Let f and g be two transcendental entire functions defined in the open complex plane \mathbb{C}. It is well known [2] that $\lim_{r \to \infty} \frac{T(r, f \circ g)}{T(r, f)} = \infty$ and $\lim_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} = \infty$. Singh [9] proved some comparative growth properties of $\log T(r, f \circ g)$ and $T(r, f)$. But he [9] was unable to solve the growth properties of $\log T(r, f \circ g)$ and $T(r, g)$. However, some results on the comparative growth of $\log T(r, f \circ g)$ and $T(r, g)$ are proved in [5]. Further Datta [3] proved some results on the comparative growth of $\log T(r, f \circ g)$ with $T(r, f) \{\log T(r, f)\}^k$ and $T(r, g) \{\log T(r, g)\}^k$ respectively where f is taken to be meromorphic, g is entire and $k > 0$. In this paper we generalize the results of Datta [3] under some different
conditions. We also study the comparative growth of \(\log^{[m]} T (r, f \circ g) \) with \(T (r, f) \{ \log T (r, f) \}^k \) and \(T (r, g) \{ \log T (r, g) \}^k \) respectively where \(f \) is taken to be meromorphic, \(g \) is entire \(k > 0 \) and \(m \) is a positive integer.

If \(f \) and \(g \) are of positive lower order then Song and Yang [11] proved that

\[
\lim_{r \to \infty} \frac{\log^{[2]} M (r, f \circ g)}{\log^{[2]} M (r, f)} = \lim_{r \to \infty} \frac{\log^{[2]} M (r, f \circ g)}{\log^{[2]} M (r, g)} = \infty
\]

where \(\log^{[k]} x = \log \left(\log^{[k-1]} x \right) \) for \(k = 1, 2, 3, \ldots \) and \(\log^{[0]} x = x \).

Also in the sequel we use the following notation:

\[
\exp^{[k]} x = \exp \left(\exp^{[k-1]} x \right) \text{ for } k = 1, 2, 3, \ldots \text{ and } \exp^{[0]} x = x.
\]

Since \(M (r, f) \) and \(M (r, g) \) are increasing functions of \(r \), Singh and Baloria [10] asked whether for sufficiently large \(R = R (r) \)

\[
\lim_{r \to \infty} \frac{\log^{[2]} M (r, f \circ g)}{\log^{[2]} M (r, f)} < \infty \text{ and } \lim_{r \to \infty} \frac{\log^{[2]} M (r, f \circ g)}{\log^{[2]} M (r, g)} < \infty.
\]

Singh and Baloria [10], Lahiri and Sharma[7], Liao and Yang [8] worked on this question. In this paper we discuss on the comparative growth properties of \(\log^{[m+1]} M (r, f \circ g) \) and \(\log M (r, g) \) for any two entire functions \(f \) and \(g \). We do not explain the standard notations and definitions in the theory of entire and meromorphic functions as those are available in [12] and[4].

Definition 1 The generalised order \(\rho_f^{(m)} \) and generalised lower order \(\lambda_f^{(m)} \) of a meromorphic function \(f \) are defined as follows:

\[
\rho_f^{(m)} = \limsup_{r \to \infty} \frac{\log^{[m]} T (r, f)}{\log r}
\]

and

\[
\lambda_f^{(m)} = \liminf_{r \to \infty} \frac{\log^{[m]} T (r, f)}{\log r}.
\]

If \(f \) is entire then
\[\rho_f^{(m)} = \limsup_{r \to \infty} \frac{\log^{[m+1]} M(r, f)}{\log r} \]

and

\[\lambda_f^{(m)} = \liminf_{r \to \infty} \frac{\log^{[m+1]} M(r, f)}{\log r} . \]

Definition 2 The generalised type \(\sigma_f^{(m)} \) of an entire function \(f \) is defined as

\[\sigma_f^{(m)} = \limsup_{r \to \infty} \frac{\log^{[m]} M(r, f)}{r^{\rho_f^{(m)}}}, 0 < \rho_f^{(m)} < \infty. \]

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [2] If \(f \) and \(g \) are entire functions then for all sufficiently large values of \(r \),

\[M(r, f \circ g) \geq M\left(\frac{1}{8} M \left(\frac{T}{2}, g\right) - |g(0)|, f\right). \]

Lemma 2 [1] If \(f \) is meromorphic and \(g \) is entire then for all sufficiently large values of \(r \),

\[T(r, f \circ g) \leq \{1 + o(1)\} \frac{T(r, g)}{\log M(r, g)} T(M(r, g), f). \]

Lemma 3 [6] If \(f \) is a non constant entire function of finite order then

\[\liminf_{r \to \infty} \frac{\log M(r, f)}{T(r, f) \{\log T(r, f)\}^k} = 0, \]

where \(k > 0 \).
Lemma 4. Let \(f \) be an entire function such that \(0 < \rho_f^{(m)} < \infty \). If \(\sigma_f^{(m)} \) and \(\sigma_{f(k)}^{(m)} \) be the respective generalised types of \(f \) and \(f^{(k)} \) then

\[
\sigma_{f(k)}^{(m)} \leq (2^k) \rho_f^{(m)} \sigma_f^{(m)}
\]

where \(k = 0, 1, 2, 3, \ldots \) and \(m = 0, 1, 2, 3, \ldots \)

Proof. It is known from Valiron \([12], p. 35\) that

\[
\frac{1}{r} \{ M(r, f) - |f(0)| \} \leq M(r, f) \leq \frac{1}{r} M(2r, f).
\]

Noting that \(\rho_{f(k)}^{(m)} = \rho_f^{(m)} \) we get from the second part of the inequality for \(k \geq 1 \)

\[
M(r, f^{(k)}) \leq M(2^k r, f)
\]

i.e.,

\[
\frac{\log[r] M(r, f^{(k)})}{r^{\rho_{f(k)}^{(m)}}} \leq \frac{\log[r] M(2^k r, f)}{(2^k)^{\rho_f^{(m)}}} \left(\frac{1}{r} \right)^{\rho_f^{(m)}}
\]

i.e.,

\[
\limsup_{r \to \infty} \frac{\log[r] M(r, f^{(k)})}{r^{\rho_{f(k)}^{(m)}}} \leq (2^k)^{\rho_f^{(m)}} \limsup_{r \to \infty} \frac{\log[r] M(2^k r, f)}{(2^k)^{\rho_f^{(m)}}}.
\]

i.e.,

\[
\sigma_{f(k)}^{(m)} \leq (2^k)^{\rho_f^{(m)}} \sigma_f^{(m)}
\]

which proves the lemma. \(\blacksquare \)

Lemma 5. Let \(f \) be meromorphic and \(g \) be entire such that \(\lambda_g^{(m)} < \infty \). If \(\lambda_{fog}^{(m)} = \infty \) then for every positive number \(A \),

\[
\lim_{r \to \infty} \frac{\log[r] T(r, f \circ g)}{\log[r] M(r^A, g^{(k)})} = \infty
\]

where \(k = 0, 1, 2, 3, \ldots \) and \(m = 1, 2, 3, \ldots \)

Proof. Let us assume that the conclusion of the lemma do not hold. Then there exists a constant \(B > 0 \) such that

\[
\lim_{r \to \infty} \frac{\log[r] T(r, f \circ g)}{\log[r] M(r^B, g^{(k)})} = \mu < \infty,
\]
provided the limit exists. Then for all large \(r \),
\[
\log^{[m]} T(r, f \circ g) \leq (\mu + \epsilon) \log^{[m+1]} M(r^B, g^{(k)}) .
\]
Again for a sequence of values of \(r \) tending to infinity,
\[
\log^{[m+1]} M(r^B, g^{(k)}) \leq \left(\lambda_{g^{(k)}}^{(m)} + \epsilon \right) B \log r.
\]
Thus from above we get for a sequence of values of \(r \) tending to infinity ,
\[
\log^{[m]} T(r, f \circ g) \leq (\mu + \epsilon) \left(\lambda_{g^{(k)}}^{(m)} + \epsilon \right) B \log r,
\]
which implies that \(\lambda_{f \circ g}^{(m)} < \infty \). This is a contradiction. Thus the lemma is proved.

\[
\begin{align*}
\text{3 Theorems.} \\
\text{In this section we present the main results of the paper.}
\end{align*}
\]

Theorem 1 Let \(f \) be meromorphic and \(g \) be non constant entire such that \(\rho_f^{(m)} \) and \(\rho_g^{(m)} \) are finite. Then
\[
\liminf_{r \to \infty} \frac{\log^{[m]} T(r, f \circ g)}{T(r, g) \{ \log T(r, g) \}^k} = 0
\]
where \(k > 0 \) and \(m = 1, 2, 3, ... \)

Proof. By Lemma 2 and \(T(r, g) \leq \log^+ M(r, g) \) we get for all sufficiently large values of \(r \),
\[
\log^{[m]} T(r, f \circ g) \leq \left(\rho_f^{(m)} + \epsilon \right) \log M(r, g) + O(1)
\]
i.e.,
\[
\frac{\log^{[m]} T(r, f \circ g)}{T(r, g) \{ \log T(r, g) \}^k} \leq \frac{\left(\rho_f^{(m)} + \epsilon \right) \log M(r, g) + O(1)}{T(r, g) \{ \log T(r, g) \}^k}. \tag{1}
\]
Now by Lemma 3 it follows from (1) that
\[
\liminf_{r \to \infty} \frac{\log^{[m]} T(r, f \circ g)}{T(r, g) \{ \log T(r, g) \}^k} = 0.
\]
This proves the theorem.
Remark 1 Considering \(f = g = \exp z \) one can easily verify that no term in the denominator of \(\frac{\log^{[m]} T(r, f \circ g)}{T(r, g) \{ \log T(r, g) \}^k} \) can be removed as we see in the following example.

Example 1 Let \(f = g = \exp z \) and \(m = k = 1 \).

Then \(T(r, g) = \frac{r}{\pi} \) and \(\log T(r, g) = \log r - \log \pi \).

Also \(T(r, f \circ g) \sim \exp r \frac{r}{(2\pi^3 r)^{\frac{1}{2}}} \).

Therefore \(\frac{\log^{[m]} T(r, f \circ g)}{T(r, g) \{ \log T(r, g) \}^k} = \frac{\log T(r, f \circ g)}{T(r, g) \log T(r, g)} \)

\[= \frac{r - \frac{1}{2} \log r + O(1)}{\frac{r}{\pi} \{ \log r - \log \pi \}} = \frac{\pi}{r} \left[\frac{r - \frac{1}{2} \log r + O(1)}{\log r - \log \pi} \right] \]

i.e., \(\liminf_{r \to \infty} \frac{\log^{[m]} T(r, f \circ g)}{T(r, g) \{ \log T(r, g) \}^k} = 0 \).

Remark 2 The condition \(\rho_f^{(m)} < \infty \) in Theorem 1 is necessary which is evident from the following example.

Example 2 Let \(f = \exp^{[m+1]} z, g = z, m = 1 \) and \(k = 1 \).

Therefore

\[\rho_f^{(m)} = \limsup_{r \to \infty} \frac{\log^{[m+1]} M(r, f)}{\log r} \]

\[= \limsup_{r \to \infty} \frac{\log^{[m+1]} \exp^{[m+1]} r}{\log r} \]

\[= \limsup_{r \to \infty} \frac{r}{\log r} = \infty \]

and similarly \(\rho_g^{(m)} = 0 \). Since \(T(r, f \circ g) \sim \exp r \frac{r}{(2\pi^3 r)^{\frac{1}{2}}} \) and \(T(r, g) \leq \log^+ M(r, g) = \log r \), it follows that

\[\frac{\log^{[m]} T(r, f \circ g)}{T(r, g) \{ \log T(r, g) \}^k} = \frac{\log T(r, f \circ g)}{T(r, g) \log T(r, g)} \geq \frac{r - \frac{1}{2} \log r + O(1)}{\log r \{ \log^2 r \}} \]

which implies that \(\lim_{r \to \infty} \frac{\log^{[m]} T(r, f \circ g)}{T(r, g) \{ \log T(r, g) \}^k} = \infty \).
Theorem 2 Let \(f \) and \(g \) be two entire functions such that \(\rho_f^{(m)} \) and \(\rho_g^{(m)} \) are finite. Also let \(\lambda_f^{(m)} > \rho_g^{(m)} \). Then

\[
\liminf_{r \to \infty} \frac{\log^{[m]} T(r, f \circ g)}{T(r, f) \{\log T(r, f)\}^k} = 0
\]

where \(k > 0 \) and \(m = 1, 2, 3, \ldots \).

Proof. Since \(\lambda_f^{(m)} > \rho_g^{(m)} \), we can choose \(\epsilon > 0 \) in such a way that \(\lambda_f^{(m)} - \epsilon > \rho_g^{(m)} + \epsilon \). By Lemma 2 and \(T(r, g) \leq \log^+ M(r, g) \) we obtain for all sufficiently large values of \(r \),

\[
\log^{[m]} T(r, f \circ g) \leq \left(\rho_f^{(m)} + \epsilon \right) \log M(r, g) + O(1)
\]

i.e.,

\[
\frac{\log^{[m]} T(r, f \circ g)}{T(r, f) \{\log T(r, f)\}^k} \leq \frac{\left(\rho_f^{(m)} + \epsilon \right) \log M(r, f)}{T(r, f) \{\log T(r, f)\}^k} \frac{\log M(r, g)}{\log M(r, f)} + \frac{O(1)}{T(r, f) \{\log T(r, f)\}^k}.
\]

(2)

Again for all sufficiently large values of \(r \),

\[
\log M(r, g) \leq \exp^{[m-1]} r^{[\rho_g^{(m)} + \epsilon]}
\]

and

\[
\log M(r, f) \geq \exp^{[m-1]} r^{[\lambda_f^{(m)} - \epsilon]}
\]

Thus from (2) we obtain for all sufficiently large values of \(r \),

\[
\frac{\log^{[m]} T(r, f \circ g)}{T(r, f) \{\log T(r, f)\}^k} \leq \frac{\left(\rho_f^{(m)} + \epsilon \right) \log M(r, f)}{T(r, f) \{\log T(r, f)\}^k} \frac{\exp^{[m-1]} r^{[\rho_g^{(m)} + \epsilon]}}{\exp^{[m-1]} r^{[\lambda_f^{(m)} - \epsilon]}} + \frac{O(1)}{T(r, f) \{\log T(r, f)\}^k}.
\]

i.e.,

\[
\liminf_{r \to \infty} \frac{\log^{[m]} T(r, f \circ g)}{T(r, f) \{\log T(r, f)\}^k} \leq \left(\rho_f^{(m)} + \epsilon \right) \liminf_{r \to \infty} \frac{\log M(r, f)}{T(r, f) \{\log T(r, f)\}^k} \liminf_{r \to \infty} \frac{\exp^{[m-1]} r^{[\rho_g^{(m)} + \epsilon]}}{\exp^{[m-1]} r^{[\lambda_f^{(m)} - \epsilon]}}. \tag{3}
\]

Now in view of Lemma 3, the theorem follows from (3).
Remark 3 Considering \(f = \exp z, \ g = z \) and \(m = k = 1 \) and proceeding exactly as in Example 1 one can easily verify that no term in the denominator of \(\frac{\log^{[m]} T(r, f \circ g)}{T(r, f) \{ \log T(r, f) \}^k} \) can be removed.

\[\Box \]

Theorem 3 Let \(f \) and \(g \) be two entire functions such that \(0 < \lambda_f^{(m)} < \infty \) and \(0 < \rho_g^{(m)} < \infty \). Also let \(0 < \sigma_g^{(m)} < \infty \). Then

\[
\limsup_{r \to \infty} \frac{\log^{[m+1]} M(r, f \circ g)}{\log M(r, g^{(k)})} \geq \frac{\lambda_f^{(m)}}{2(2k+1)\rho_g^{(m)}}.
\]

where \(k = 0, 1, 2, 3, ... \) and \(m = 1, 2, 3, ... \)

Proof. Let \(0 < \epsilon < \min \{ \lambda_f^{(m)}, \sigma_g^{(m)} \} \). Then for a sequence of values of \(r \) tending to infinity we obtain that

\[
\log M\left(\frac{r}{2}, g\right) \geq (\sigma_g^{(m)} - \epsilon) \left(\frac{r}{2} \right)^{\rho_g^{(m)}}.
\]

(4)

Again from Lemma 1 we get for all sufficiently large values of \(r \),

\[
\log^{[m+1]} M(r, f \circ g) \geq (\lambda_f^{(m)} - \epsilon) \log \frac{1}{8} + (\lambda_f^{(m)} - \epsilon) \log M\left(\frac{r}{2}, g\right).
\]

(5)

Now for a sequence of values of \(r \) tending to infinity it follows from (4) and (5) that

\[
\log^{[m+1]} M(r, f \circ g) \geq (\lambda_f^{(m)} - \epsilon) \log \frac{1}{8} + (\lambda_f^{(m)} - \epsilon) (\sigma_g^{(m)} - \epsilon) \left(\frac{r}{2} \right)^{\rho_g^{(m)}}.
\]

(6)

Again by Lemma 4 we get for all sufficiently large values of \(r \),

\[
\log M(r, g^{(k)}) \leq (\sigma_g^{(m)} + \epsilon) r^{\rho_g^{(m)}} \leq \left(\frac{2^{k+1}}{\sigma_g^{(m)}} \right) (\sigma_g^{(m)} + \epsilon) r^{\rho_g^{(m)}}.
\]

(7)

So from (6) and (7) it follows that for a sequence of values of \(r \) tending to infinity,

\[
\log^{[m+1]} M(r, f \circ g) \geq \frac{(\lambda_f^{(m)} - \epsilon) \log \frac{1}{8} + (\lambda_f^{(m)} - \epsilon) (\sigma_g^{(m)} - \epsilon) \left(\frac{r}{2} \right)^{\rho_g^{(m)}}}{\left(\frac{2^{k+1}}{\sigma_g^{(m)}} \right) (\sigma_g^{(m)} + \epsilon) r^{\rho_g^{(m)}}}.
\]

(8)

Since \(\epsilon (> 0) \) is arbitrary, we get from (8) that

\[
\limsup_{r \to \infty} \frac{\log^{[m+1]} M(r, f \circ g)}{\log M(r, g^{(k)})} \geq \frac{\lambda_f^{(m)}}{2(2k+1)\rho_g^{(m)}}.
\]

Thus the theorem is established. \(\Box \)
Theorem 4 Let f be meromorphic and g be entire such that $0 < \lambda_{fog}^{(m)} \leq \rho_{fog}^{(m)} < \infty$ and $0 < \lambda_{g}^{(m)} \leq \rho_{g}^{(m)} < \infty$. Then for any positive number A,

$$\frac{\lambda_{fog}^{(m)}}{A\rho_{g}^{(m)}} \leq \liminf_{r \to \infty} \frac{\log^{[m]} T (r, f \circ g)}{\log^{[m]} T (r^A, g^{(k)})} \leq \frac{\lambda_{fog}^{(m)}}{A\lambda_{g}^{(m)}} \leq \limsup_{r \to \infty} \frac{\log^{[m]} T (r, f \circ g)}{\log^{[m]} T (r^A, g^{(k)})} \leq \frac{\rho_{fog}^{(m)}}{A\lambda_{g}^{(m)}},$$

where $k = 0, 1, 2, ...$ and $m = 1, 2, 3, ...$

Proof. For all large values of r,

$$\log^{[m]} T (r, f \circ g) \geq \left(\lambda_{fog}^{(m)} - \epsilon \right) \log r \tag{9}$$

and

$$\log^{[m]} T (r^A, g^{(k)}) \leq A \left(\rho_{g}^{(m)} + \epsilon \right) \log r = A \left(\rho_{g}^{(m)} + \epsilon \right) \log r. \tag{10}$$

Now from (9) and (10) it follows for all large values of r that

$$\frac{\log^{[m]} T (r, f \circ g)}{\log^{[m]} T (r^A, g^{(k)})} \geq \frac{\lambda_{fog}^{(m)} - \epsilon}{A \left(\rho_{g}^{(m)} + \epsilon \right)}.$$

As $\epsilon (> 0)$ is arbitrary, we obtain that

$$\liminf_{r \to \infty} \frac{\log^{[m]} T (r, f \circ g)}{\log^{[m]} T (r^A, g^{(k)})} \geq \frac{\lambda_{fog}^{(m)}}{A\rho_{g}^{(m)}}. \tag{11}$$

Again for a sequence of values of r tending to infinity,

$$\log^{[m]} T (r, f \circ g) \leq \left(\lambda_{fog}^{(m)} + \epsilon \right) \log r \tag{12}$$

and for all large values of r,

$$\log^{[m]} T (r^A, g^{(k)}) \geq A \left(\lambda_{g}^{(m)} - \epsilon \right) \log r. \tag{13}$$

So combining (12) and (13) we get for a sequence of values of r tending to infinity,

$$\frac{\log^{[m]} T (r, f \circ g)}{\log^{[m]} T (r^A, g^{(k)})} \leq \frac{\lambda_{fog}^{(m)} + \epsilon}{A \left(\lambda_{g}^{(m)} - \epsilon \right)}.$$

Since $\epsilon (> 0)$ is arbitrary, it follows that
\[
\liminf_{r \to \infty} \frac{\log^{|m|} T(r, f \circ g)}{\log^{|m|} T(r^A, g^{(k)})} \leq \frac{\lambda_{fog}^{(m)}}{\lambda_g^{(m)} A}.
\] (14)

Also for a sequence of values of r tending to infinity,
\[
\log^{|m|} T(r^A, g^{(k)}) \leq A \left(\lambda_g^{(m)} + \epsilon \right) \log r.
\] (15)

Now from (9) and (15) we obtain for a sequence of values of r tending to infinity,
\[
\frac{\log^{|m|} T(r, f \circ g)}{\log^{|m|} T(r^A, g^{(k)})} \geq \frac{\lambda_{fog}^{(m)} - \epsilon}{A \left(\lambda_g^{(m)} + \epsilon \right)}.
\]

Since $\epsilon (> 0)$ is arbitrary, it follows that
\[
\limsup_{r \to \infty} \frac{\log^{|m|} T(r, f \circ g)}{\log^{|m|} T(r^A, g^{(k)})} \geq \frac{\lambda_{fog}^{(m)}}{\lambda_g^{(m)} A}.
\] (16)

Also for all large values of r,
\[
\log^{|m|} T(r, f \circ g) \leq \left(\rho_{fog}^{(m)} + \epsilon \right) \log r.
\] (17)

So from (13) and (17) it follows that for all large values of r,
\[
\frac{\log^{|m|} T(r, f \circ g)}{\log^{|m|} T(r^A, g^{(k)})} \leq \frac{\rho_{fog}^{(m)} + \epsilon}{A \left(\lambda_g^{(m)} - \epsilon \right)}.
\]

As $\epsilon (> 0)$ is arbitrary, we obtain that
\[
\limsup_{r \to \infty} \frac{\log^{|m|} T(r, f \circ g)}{\log^{|m|} T(r^A, g^{(k)})} \leq \frac{\rho_{fog}^{(m)}}{\lambda_g^{(m)} A}.
\] (18)

Thus the theorem follows from (11), (14), (16) and (18).

Remark 4 Considering $f = z$, $g = \exp z$, $m = 1$ and $A = 1$ one can easily verify that the sign $' \leq ' cannot be replaced by $' < ' only in Theorem 4.
Theorem 5 Let f be meromorphic and g be entire such that $0 < \lambda_{fog}^{(m)} \leq \rho_{fog}^{(m)} < \infty$ and $0 < \rho_g^{(m)} < \infty$. Then for any positive number A,
\[
\liminf_{r \to \infty} \frac{\log[m] T(r, f \circ g)}{\log[m] T(r^A, g^{(k)})} \leq \frac{\rho_{fog}^{(m)}}{A \rho_g^{(m)}} \leq \limsup_{r \to \infty} \frac{\log[m] T(r, f \circ g)}{\log[m] T(r^A, g^{(k)})}
\]
where $k = 0, 1, 2, 3...$ and $m = 1, 2, 3...$

Proof. For all large values of r,
\[
\log[m] T(r, f \circ g) \leq (\rho_{fog}^{(m)} + \epsilon) \log r.
\]
Also from the definition of generalised order we get for a sequence of values of r tending to infinity,
\[
\log[m] T(r^A, g^{(k)}) \geq A (\rho_g^{(m)} - \epsilon) \log r.
\]
Now from (19) and (20) it follows that for a sequence of values of r tending to infinity,
\[
\frac{\log[m] T(r, f \circ g)}{\log[m] T(r^A, g^{(k)})} \leq \frac{(\rho_{fog}^{(m)} + \epsilon)}{A (\rho_g^{(m)} - \epsilon)}.
\]
As $\epsilon (> 0)$ is arbitrary, we obtain that
\[
\liminf_{r \to \infty} \frac{\log[m] T(r, f \circ g)}{\log[m] T(r^A, g^{(k)})} \leq \frac{\rho_{fog}^{(m)}}{A \rho_g^{(m)}}.
\]
Again for a sequence of values of r tending to infinity,
\[
\log[m] T(r, f \circ g) \geq (\rho_{fog}^{(m)} - \epsilon) \log r
\]
and from the definition of generalised order we get for all large values of r
\[
\log[m] T(r^A, g^{(k)}) \leq A (\rho_g^{(m)} + \epsilon) \log r.
\]
So combining (22) and (23) we get for a sequence of values of r tending to infinity,
\[
\frac{\log[m] T(r, f \circ g)}{\log[m] T(r^A, g^{(k)})} \geq \frac{(\rho_{fog}^{(m)} - \epsilon)}{A (\rho_g^{(m)} + \epsilon)}.
\]
Since $\epsilon (> 0)$ is arbitrary, it follows that
\[
\limsup_{r \to \infty} \frac{\log[m] T(r, f \circ g)}{\log[m] T(r^A, g^{(k)})} \geq \frac{\rho_{fog}^{(m)}}{A \rho_g^{(m)}}.
\]
Thus the theorem follows from (21) and (24).
Remark 5 Considering \(f = z, g = \exp z, m = 1 \) and \(A = 1 \) one can easily see that the sign \(\leq \) in Theorem 5 cannot be replaced by \(< \) only.

Remark 6 Combining Theorem 4 and Theorem 5 we may state the following theorem without proof.

Theorem 6 Let \(f \) be meromorphic and \(g \) be entire such that \(0 < \lambda_f^{(m)} \leq \rho_f^{(m)} < \infty \) and \(0 < \lambda_g^{(m)} \leq \rho_g^{(m)} < \infty \). Then for any positive number \(A \),

\[
\liminf_{r \to \infty} \frac{\log^{[m]} T(r, f \circ g)}{\log^{[m]} T(r, A, g(k))} \leq \min \left\{ \frac{\lambda_f^{(m)}}{A\lambda_g^{(m)}}, \frac{\rho_f^{(m)}}{A\rho_g^{(m)}} \right\}
\]

\[
\leq \max \left\{ \frac{\lambda_f^{(m)}}{A\lambda_g^{(m)}}, \frac{\rho_f^{(m)}}{A\rho_g^{(m)}} \right\}
\]

\[
\leq \limsup_{r \to \infty} \frac{\log^{[m]} T(r, f \circ g)}{\log^{[m]} T(r, A, g(k))}.
\]

Remark 7 Considering \(f = z, g = \exp z, m = 1 \) and \(A = 1 \) one can easily verify that the sign \(\leq \) cannot be replaced by \(< \) only in Theorem 6.

Acknowledgement

The authors are thankful to Dr. B.C. Giri, Department of Mathematics, Jadavpur University for offering valuable suggestions towards the improvement of the paper.

References

Received: April, 2010