Class with Negative Coefficients and Starlike with Respect to Conjugate Points

Aini Janteng

School of Science and Technology, Universiti Malaysia Sabah
Locked Bag No. 2073, 88999 Kota Kinabalu, Sabah, Malaysia
aini_jg@ums.edu.my

Abstract

Let \(S^*_{cT}(A, B) \) denote the class of functions \(f \) which are analytic in an open unit disc \(D = \{ z : |z| < 1 \} \) and satisfying the condition

\[
\frac{2zf'(z)}{f(z) + f(\overline{z})} \preceq 1 + Az + Bz, \quad -1 \leq B < A \leq 1, \quad z \in D.
\]

The aim of paper is to determine coefficient estimates for the class \(S^*_{cT}(A, B) \).

Mathematics Subject Classification: Primary 30C45

Keywords: starlike with respect to conjugate points, coefficient estimates

1 Introduction

Let \(U \) be the class of functions which are analytic in the open unit disc \(D = \{ z : |z| < 1 \} \) given by

\[
w(z) = \sum_{k=1}^{\infty} b_k z^k
\]

and satisfying the conditions

\[
w(0) = 0, \quad |w(z)| < 1, \quad z \in D.
\]

Let \(S \) denote the class of functions \(f \) which are analytic and univalent in \(D \) of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in D.
\]

Also, let \(S^*_s \) be the subclass of \(S \) consisting of functions given by (1) satisfying

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z) - f(-z)} \right\} > 0, \quad z \in D.
\]
These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi in 1959. El-Ashwah and Thomas in [1], introduced two other classes namely the class S^*_c consisting of functions starlike with respect to conjugate points and S^*_{sc} consisting of functions starlike with respect to symmetric conjugate points.

Further, let $f, g \in \mathcal{U}$. Then we say that f is subordinate to g, and we write $f \prec g$, if there exists a function $w \in \mathcal{U}$ such that $f(z) = g(w(z))$ for all $z \in \mathcal{D}$. Specially, if g is univalent in \mathcal{D}, then $f \prec g$ if and only if $f(0) = g(0)$ and $f(\mathcal{D}) \subseteq g(\mathcal{D})$.

In terms of subordination, Goel and Mehrok in 1982 introduced a subclass of S^*_s denoted by $S^*_s(A, B)$. Let $S^*_s(A, B)$ denote the class of functions of the form (1) and satisfying the condition

$$\frac{2zf'(z)}{f(z) - f(-z)} \prec \frac{1 + Az}{1 + Bz}, \quad -1 \leq B < A \leq 1, \quad z \in \mathcal{D}.$$

However, for this paper, we consider a subclass of \mathcal{T} where \mathcal{T} denotes the class consisting of functions f of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad z \in \mathcal{D}. \quad (2)$$

Now, let consider $S^*_c T(A, B)$ be the class of functions of the form (2) and satisfying the condition

$$\frac{2zf'(z)}{f(z) + f(z)} \prec \frac{1 + Az}{1 + Bz}, \quad -1 \leq B < A \leq 1, \quad z \in \mathcal{D}.$$

By definition of subordination it follows that $f \in S^*_c T(A, B)$ if and only if

$$\frac{2zf'(z)}{f(z) + f(z)} = \frac{1 + Aw(z)}{1 + Bw(z)} = P(z), \quad w \in \mathcal{U} \quad (3)$$

where

$$P(z) = 1 + \sum_{n=1}^{\infty} p_n z^n. \quad (4)$$

We study the class $S^*_c T(A, B)$ and obtain coefficient estimates.

2 Preliminary Result

We need the following preliminary lemma, required for proving our result.
Lemma 2.1 ([2]) If $P(z)$ is given by (4) then

$$|p_n| \leq (A - B).$$ \hfill (5)

3 Main Result

We give the coefficient inequalities for the class $S_c^*(A, B)$.

Theorem 3.1 Let $f \in S_c^*(A, B)$, then for $n \geq 1$,

$$|a_{2n}| \leq \frac{(A - B)^{2n-2}}{(2n - 1)!} \prod_{j=1}^{2n-1} (A - B + j),$$ \hfill (6)

$$|a_{2n+1}| \leq \frac{(A - B)^{2n-1}}{(2n)!} \prod_{j=1}^{2n} (A - B + j).$$ \hfill (7)

Proof.

For (3) and (4), we have

$$2(z - 2a_2z^2 - 3a_3z^3 - ... - 2na_{2n}z^{2n} - (2n + 1)a_{2n+1}z^{2n+1} - ...)
\begin{align*}
= 2(z &- a_2z^2 - a_3z^3 - a_4z^4 - ... - a_{2n}z^{2n} - a_{2n+1}z^{2n+1} - ...) \\
&\cdot (1 + p_1z + p_2z^2 + ... + p_{2n}z^{2n} + p_{2n+1}z^{2n+1} + ...)
\end{align*}
$$

Equating the coefficients of like powers of z, we have

$$-a_2 = p_1, \quad -2a_3 = p_2 - a_2p_1$$ \hfill (8)

$$-3a_4 = p_3 - a_2p_2 - a_3p_1, \quad -4a_5 = p_4 - a_2p_3 - a_3p_2 - a_4p_1$$ \hfill (9)

$$-(2n - 1)a_{2n} = p_{2n-1} - a_2p_{2n-1} - a_3p_{2n-3} - ... - a_{2n-1}p_1$$ \hfill (10)

$$-(2n)a_{2n+1} = p_{2n} - a_2p_{2n-1} - a_3p_{2n-2} - ... - a_{2n}p_1.$$ \hfill (11)

Easily using Lemma 2.1 and (8), we get

$$|a_2| \leq A - B, \quad |a_3| \leq \frac{(A - B)(A - B + 1)}{2}.$$ \hfill (12)

Again by applying (12) and followed by Lemma 2.1, we get from (9)

$$|a_4| \leq \frac{(A - B)(A - B + 1)(A - B + 2)}{2(3)}.$$
It follows that (6) and (7) hold for \(n=1,2 \). We now prove (6) using induction. Equation (10) in conjunction with Lemma 2.1 yield

\[
|a_{2n}| \leq \frac{A-B}{2n-1} \left[1 + \sum_{k=1}^{n-1} |a_{2k}| + \sum_{k=1}^{n-1} |a_{2k+1}| \right].
\]

We assume that (6) holds for \(k=3,4,\ldots,(n-1) \). Then from (13), we obtain

\[
|a_{2n}| \leq \frac{A-B}{2n-1} \left[1 + \sum_{k=1}^{n-1} \frac{A-B}{(2k-1)!} \prod_{j=1}^{2k-2} (A-B+j) + \sum_{k=1}^{n-1} \frac{A-B}{(2k)!} \prod_{j=1}^{2k-1} (A-B+j) \right].
\]

In order to complete the proof, it is sufficient to show that

\[
\frac{A-B}{2m-1} \left[1 + \sum_{k=1}^{m-1} \frac{A-B}{(2k-1)!} \prod_{j=1}^{2k-2} (A-B+j) + \sum_{k=1}^{m-1} \frac{A-B}{(2k)!} \prod_{j=1}^{2k-1} (A-B+j) \right]
\]

\[
= \frac{A-B}{(2m-1)!} \prod_{j=1}^{2m-2} (A-B+j), \quad (m = 3, 4, \ldots, n).
\]

(15) is valid for \(m = 3, 4, \ldots, n \).

Let us suppose that (15) is true for all \(m, \ 3 < m \leq (n - 1) \). Then from (14)

\[
\frac{A-B}{2n-1} \left[1 + \sum_{k=1}^{n-1} \frac{A-B}{(2k-1)!} \prod_{j=1}^{2k-2} (A-B+j) + \sum_{k=1}^{n-1} \frac{A-B}{(2k)!} \prod_{j=1}^{2k-1} (A-B+j) \right]
\]

\[
= \left(\frac{2n-3}{2n-1} \right) \left(\frac{A-B}{2(n-1)-1} \right) \left[1 + \sum_{k=1}^{n-2} \frac{A-B}{(2k-1)!} \prod_{j=1}^{2k-2} (A-B+j) + \sum_{k=1}^{n-2} \frac{A-B}{(2k)!} \prod_{j=1}^{2k-1} (A-B+j) \right]
\]

\[
+ \frac{A-B}{2n-1} \frac{A-B}{(2(n-1)-1)!} \prod_{j=1}^{2n-4} (A-B+j) + \frac{A-B}{2n-1} \frac{A-B}{(2(n-1)-1)!} \prod_{j=1}^{2n-3} (A-B+j)
\]

\[
= \frac{2n-3}{2n-1} \frac{A-B}{(2(n-1)-1)!} \prod_{j=1}^{2n-4} (A-B+j)
\]

\[
+ \frac{A-B}{2n-1} \frac{A-B}{(2(n-1)-1)!} \prod_{j=1}^{2n-4} (A-B+j) + \frac{A-B}{2n-1} \frac{A-B}{(2(n-1)-1)!} \prod_{j=1}^{2n-3} (A-B+j)
\]

\[
= \frac{A-B}{(2n-1)(2(n-1)-1)!} \prod_{j=1}^{2n-4} (A-B+j)(A-B+2n-3)
\]
Thus, (15) holds for $m = n$ and hence (6) follows. Similarly, we can prove (7).

References

Received: April, 2009