A Study on Generalised Aluthge Transformation

T. Veluchamy

Principal
Dr. S.N.S. Rajalakshmi College of Arts & Science
Chinnavedampatti Post
Coimbatore - 641006, Tamil Nadu, India

T. Thulasimani

Department of Mathematics
Bannari Amman Institute of Technology
Sathyamangalam - 638 401, Tamilnadu, India
manitulasi@yahoo.co.in

Abstract

In this paper, various properties of $T(s, t) = |T|^s U |T|^t$ defined more generally for any s and t such as $s \geq 0$ and $t \geq 0$ the Aluthge transform of an operator T are studied.

Mathematics Subject Classification: 47B20, 47A63

Keywords: p-hyponormal operator, Aluthge Transform, Class A operator, quasiclass A operator, quasiclass (A, k) operator, posinormal operator, quasiposinormal operator

1 Introduction

In [1] A. Aluthge introduced the operator $\tilde{T} = |T|^{1/2} U |T|^{1/2}$ for an operator T with its polar decomposition $T = U |T| = |T^*| U$. [9] Takashi Yoshino defined more generally for any s and t such as $s \geq 0$ and $t \geq 0$ $T(s, t) = |T|^s U |T|^t$ the p-hyponormality of the Aluthge transform of T. [5] introduced a very interesting class of bounded linear Hilbert space operators Class A. Class A operators have been studied by many researchers for example [2, 3, 6, 10, 11, 12]. Recently Jeon and Kim [7] introduced quasiclass A operators as an extension of the notion of class A operators. In [8] Tanahashi, Jeon, Kim and Uchiyama considered an extension of quasiclass A operators, quasiclass (A, k) operators. [4] H. Crawford Rhaly introduced
posinormal operators in Hilbert space. In this article we are interested in some of the properties of the Althuge transform $T(s, t)$.

2 Preliminary Notes

Let T be a bounded linear operator on a Hilbert space H. In [1], A. Aluthge introduced the operator \tilde{T} for an operator T with its polar decomposition $T = U \, |T| = |T^*| \, U$ and [9] has introduced $T(s, t) = |T|^s \, U \, |T|^t$.

Definition 2.1: [5] An operator T belongs to class A iff
\[(T^* |T|^2 T)^{1/2} \geq T^* T.\]

Definition 2.2: [7] An operator T belongs to quasiclass A iff
\[T^* \big(|T|^2 - |T|^2 \big) T \geq 0.\]

Definition 2.3: [8] T in $B(H)$ is called a k- quasiclass A operator for a positive integer k if $T^{*k} \big(|T|^2 - |T|^2 \big) T^k \geq 0$.

Definition 2.4: [4] An operator T in a Hilbert space H is called posinormal if $TT^* \leq c^2 T^* T$ for some $c > 0$.

Definition 2.5: [4] An operator T in a Hilbert space H is quasiposinormal if $(TT^*)^2 \leq c^2 T^* T^2$.

Definition 2.6: [1] A bounded linear operator on a Hilbert space H is p - hyponormal if $(T^* T)^p \geq (TT^*)^p$, $p > 0$.

3 Posinormal Operators

Theorem 3.1:
Let T be p - hyponormal for some p such that $p > 0$. Then for any s, t such as max $(s, t) \leq p$, $T(s, t)$ is posinormal.

Proof:
Since T is p - hyponormal $|T|^{2p} \geq |T^*|^{2p}$. T is posinormal if $TT^* \leq c^2 T^* T$ for some $c > 0$.

Now,
\[T(s,t)T^*(s,t) - c^2 T^* (s,t) T(s,t) \]

\[= |T|^s U |T|^t (|T|^s U |T|^t)^* - c^2 (|T|^s U |T|^t)^* (|T|^s U |T|^t) \]

\[= |T|^s U |T|^t |T|^t U^* |T|^s - c^2 |T|^t U^* |T|^s U |T|^t \]

\[= |T|^s |T^*|^2 |T|^s - c^2 |T|^t |T^*|^2 |T|^t \]

\[= |T|^s (|T^*|^{2p})^{t/p} |T|^s - c^2 |T|^t (|T^*|^{2p})^{s/p} |T|^t \]

\[\leq |T|^s (|T|^t)^{2} |T|^s - c^2 |T|^t (|T|^t)^{2} s/p |T|^t \]

\[\leq |T|^{2(s+t)} - c^2 |T|^{2(s+t)} \]

\[= (1 - c^2) |T|^{2(s+t)} \]

\[\leq 0, c > 0. \]

\[\Rightarrow T(s,t) \text{ is quasiposinormal}. \]

Theorem 3.2:

If \(T \) is a p-hyponormal operator then \(T(s,t) \) is quasiposinormal.

Proof:

\(T \) is quasiposinormal if

\[(TT^*)^2 \leq c^2 T^{*2} T^2. \]

\[(T(s,t)T^*(s,t))^2 - c^2 T^{*2}(s,t) T^2(s,t) \]

\[= (|T|^s (|T^*|^{2p})^{t/p} |T|^s)^2 - c^2 |T|^t (|T^*|^{2p})^{s/p} |T|^t \]

\[\leq |T|^{2(s+t)} - c^2 |T|^t (|T|^t)^{2} s/p |T|^t \]

\[= |T|^{4(s+t)} - c^2 |T|^{4(s+t)} \]

\[= (1 - c^2) |T|^{4(s+t)} \]

\[\leq 0, c > 0 \]

\[\Rightarrow T(s,t) \text{ is quasiposinormal}. \]

4 Class A Operators

Theorem 4.1:

If \(T \) is a p-hyponormal operator in a Hilbert space \(H \), then \(T(s,t) \) is of class \(A \).

Proof:

An operator \(T \) is in class \(A \) if

\[(T^* T)^{1/2} \geq T^* T \]

or \((T^* T)^{1/2} \geq (T^*)^2 \)
Now,

\[T^*(s, t)|T(s, t)|^2 T(s, t) \]

\[= T^*(s, t)T^*(s, t)T(s, t)T(s, t) \]

\[= T^*(s, t)T^2(s, t) \]

\[= |T|^2 U^* |T|^2 U |T|^2 \]

\[= |T|^2 U^* |T|^4 U |T|^2 \]

\[\geq |T|^2 |T|^4 |T|^2 \]

\[\geq |T|^{4(s+t)} \]

\[= (T^*(s, t)T(s, t))^2 \]

\[\Rightarrow T(s, t) \text{ is in class } A. \]

Theorem 4.2 :

If \(T \) is \(p \)-hyponormal then \(T^*(s, t) \) is in quasiclass \(A. \)

Proof:

An operator \(T \) belongs to quasi class \(A \) if \(T^* \left(|T|^2 - |T|^2 \right) T \geq 0. \)

\[T^*(s, t)|T^2(s, t)|T(s, t) - T^*(s, t)|T(s, t)|^2 T(s, t) \]

\[= T^*(s, t)(T^*(s, t)T^2(s, t))^{1/2}T(s, t) - T^{2}(s, t)T^2(s, t) \]

\[\geq T^*(s, t)(|T|^{4(s+t)})^{1/2}T(s, t) - |T|^{4(s+t)} \]

\[\geq T^*(s, t)T^*(s, t)T(s, t)T(s, t) - |T|^{4(s+t)} \]

\[\geq |T|^{4(s+t)} - |T|^{4(s+t)} \]

\[= 0 \]

\[\Rightarrow T(s, t) \text{ belongs to quasiclass } A. \]

Theorem 4.3 :

If \(T \) is \(p \)-hyponormal then \(T^*(s, t) \) belongs to \(k \)-quasiclass \(A. \)

Proof:

An operator \(T \) is \(k \) quasiclass \(A \) if \(T^k \left(|T|^2 - |T|^2 \right) T^k \geq 0. \)

\[T^k(s, t)|T^2(s, t)|T(s, t) - T^*(s, t)|T(s, t)|^2 T^k(s, t) \]

\[= T^k(s, t)(T^2(s, t)T^2(s, t))^{1/2}T(s, t) - T^k(s, t)T^k(s, t)T^k(s, t) \]

\[\geq T^k(s, t)(|T|^{4(s+t)})^{1/2}T^k(s, t) - T^*(k+1)(s, t)T^*(k+1)(s, t) \]

\[\geq T^k(s, t)T^*(s, t)T(s, t)T^k(s, t) - |T|^{(k+1)(s+t)} \]

\[\geq |T|^{(k+1)(s+t)} - |T|^{(k+1)(s+t)} \]

\[= 0 \]

\[\Rightarrow T(s, t) \text{ belongs to } k \text{ quasiclass } A. \]
References

Received: January, 2010