Composition Operators of Class Q^*

D. Senthilkumar and T. Prasad

Department of Mathematics
Government Arts College (Autonomous),
Coimbatore, Tamilnadu, India - 641018
senthilsenkumhari@gmail.com, prasadvalapil@gmail.com

Abstract

In this paper, class Q^* composition operators on L^2 space are characterized and the weighted composition operators $C_r = |C|^rU|C|^{1-r}$, $0 < r \leq 1$ and $\tilde{C} = |C|^\frac{1}{2}V|C|^\frac{1}{2}$ are studied.

Mathematics Subject Classification: 47B20, 47B38

Keywords: composition operators, class Q^* operators, conditional expectation

1. Introduction and Preliminaries

Let (X, Σ, λ) be a sigma - finite measure space, a bounded linear operator $Cf = f \circ T$ on $L^2(X, \Sigma, \lambda)$ is said to be a composition operator induced by T, a non singular measurable transformation from X into itself when the measure λT^{-1} is absolutely continuous with respect to the measure λ and the Radon - Nikodym derivative $d\lambda T^{-1}/d\lambda = f_0$ is essentially bounded. The Radon - Nikodym derivative of the measure $\lambda(T^k)^{-1}$ with respect to λ is denoted by $f_0^{(k)}$, where T^k is obtained by composing T^{-1} times. Every essentially bounded complex valued measurable function f_0 induces the bounded operator M_{f_0} on $L^2(\lambda)$, which is defined by $M_{f_0}f = f_0f$ for every $f \in L^2(\lambda)$. Further $C^*C = M_{f_0}$ and $C^{*2}C^2 = M_{f_0}^2$ [15]

A weighted composition operator (w.c.o) induced by T is defined as $Wf = w(f \circ T)$, w is a complex valued Σ measurable function. Let w_k denote $w(w \circ T)(w \circ T^2)...(w \circ T^{k-1})$ so that $W^k f = w_k(f \circ T)^k$ [13]. Alan Lambert [12] associated conditional expectation operator E with T as $E(\cdot / T^{-1}\Sigma) = E(\cdot)$. $E(f)$ is defined for each non - negative measurable function $f \in L^p(1 \leq p)$ and is uniquely determined by the condition
(i) $E(f)$ is $T^{-1}\Sigma$ measurable.
(ii) if B is any $T^{-1}\Sigma$ measurable set for which $\int_B f d\lambda$ converges we have $\int_B f d\lambda = \int_B E(f) d\lambda$.

For deeper study of the properties of E see [5],[9],[10]. As an operator on L^p, E is the projection on to the closure of range of C. E is the identity on L^p if and only if $T^{-1}\Sigma = \Sigma$.

Let $B(H)$ denote the Banach Algebra of all bounded linear operators on a Hilbert Space H. An operator $T \in B(H)$ is $*$- paranormal if $\|T^* x\|^2 \leq \|T^2 x\| \|x\|$ for every $x \in H$ [2]. Equivalently an operator $T \in B(H)$ is $*$-Paranormal if and only if $T^{*2}T^2 - 2\lambda TT^* + \lambda^2 \geq 0$ for all $\lambda \in \mathbb{R}$ [3]. An operator T is class Q if $T^{*2}T^2 - 2T^*T + 1 \geq 0$. Equivalently T is of class Q if $\|Tx\|^2 \leq \frac{1}{2}(\|T^2x\|^2 + \|x\|^2)$ for every $x \in H$. Class Q operator is studied by B. P Duggal. et al.[7]. Class Q composition operator is studied by S. Panayappan. et al. [14].

2. Class Q^* composition operators

Youngoh Yang and Cheoul Jun Kim [16] introduced a new class ‘class Q^*’ operators and studied several properties of class Q^*. $*$- paranormal composition operator is studied in [6] by N. Chennappan and S. Karthikeyan. In this article our main aim is to characterize class Q^* composition operator and weighted class Q^* composition operator.

Definition 2.1 [16]. An operator T is of class Q^* if $T^{*2}T^2 - 2TT^* + I \geq 0$. Equivalently $T \in Q^*$ if $\|T^*x\|^2 \leq \frac{1}{2}(\|T^2x\|^2 + \|x\|^2)$ for every $x \in H$.

The following lemma due to Harrington and Whitely [11] is well known.

Lemma 2.2. Let P denote the projection of L^2 onto $\overline{R(C)}$
(a) $C^* C f = f_0 f$ and $CC^* f = (f_0 \circ T) P f$ for all $f \in L^2$.
(b) $\overline{R(C)} = \{ f \in L^2 : f$ is $T^{-1}\Sigma$ measurable $\}$.

Theorem 2.3. Let $C \in B(L^2(\lambda))$. Then C is of class Q^* if and only if $f_0^{(2)} = 2(f_0 \circ T) P + 1 \geq 0$ a.e., where P is the projection of L^2 onto $\overline{R(C)}$.

Proof. By definition 2.1, C is of class Q^* if and only if $C^{*2}C^2 - 2CC^* + I \geq 0$. Thus $\langle (C^{*2}C^2 - 2CC^* + I) \chi_E, \chi_E \rangle \geq 0$ for every characteristic function χ_E of E in Σ such that $\lambda(E) < \infty$. This imply that $\langle (M_{f_0^{(2)}} - 2M_{f_0 \circ T} P + 1) \chi_E, \chi_E \rangle \geq 0$. That is $\int_E (f_0^{(2)} - 2(f_0 \circ T) P + 1) d\lambda \geq 0$ for every E in Σ. Hence C is class Q^* if and only if $f_0^{(2)} - 2(f_0 \circ T) P + 1 \geq 0$ a.e.
Corollary 2.4. If \(C \in B(L^2(\lambda)) \) with dense range then \(C \) is of class \(Q^* \) if and only if \(f_0^{(2)} - 2(f_0 \circ T) + 1 \geq 0 \) a.e.

Proof. Since \(C \) has dense range then we have \(CC^* f = (f_0 \circ T) f \). It follows that \(f_0^{(2)} - 2(f_0 \circ T) + 1 \geq 0 \) a.e.

Example 2.5. Let \(X = N \), the set of all natural numbers and \(\lambda \) be the counting measure on it. Define \(T : N \to N \) by \(T(1)=T(2)=T(3)=1, T(4n+m)=n+1 \), \(m = 0,1,2,3 \) and \(n \in N \). Since \(f_0^{(2)} - 2(f_0 \circ T) + 1 \geq 0 \) for every \(n \), \(C \) is of class \(Q^* \) composition operator.

Theorem 2.6. Let \(C \in B(L^2(\lambda)) \) then \(C \) is \(* \)-paranormal if and only if \((f_0 \circ T)^2 P \leq f_0^{(2)} \) a.e.

Proof. \(C \) is \(* \)-paranormal if and only if \(C^* C^2 - 2kCC^* + k^2 \geq 0 \). It follows that, \(C \) is \(* \)-paranormal if and only if \((f_0^{(2)} - 2k(f_0 \circ T)P + k^2 \geq 0 \) a.e. That is \((f_0^{(2)} \circ T)^2 P \leq f_0^{(2)} \) a.e.

Corollary 2.7. Let \(C \in B(L^2(\lambda)) \) with dense range, if \(C \) is \(* \)-paranormal then \(C \) is of class \(Q^* \).

Proof. \(C \) is \(* \)-paranormal then \((f_0 \circ T)^2 \leq f_0^{(2)} \) a.e.

Now, \(f_0^{(2)} - 2(f_0 \circ T) + 1 \geq (f_0 \circ T)^2 - 2(f_0 \circ T) + 1 \geq 0 \). That is, \(C \) is of class \(Q^* \).

Theorem 2.8. Let \(C \in B(L^2(\lambda)) \), then \(C^* \in \text{class } Q^* \) if and only if \((f_0^{(2)} \circ T^2)P_2 - 2f_0 + 1 \geq 0 \), a.e where \(P_2 \) is the projection of \(L^2 \) onto \(\overline{R(C^2)} \).

Proof. \(C^* \) is of class \(Q^* \) if and only if \(C^2C^* - 2C^* C + I \geq 0 \). That is \(\langle (C^2C^* - 2C^* C + I) f, f \rangle \geq 0 \) for every \(f \in L^2 \). We have \(\langle CC^* f, f \rangle = \langle (f_0 \circ T)P_1 f, f \rangle \) and \(\langle C^2C^* f, f \rangle = \langle (f_0^{(2)} \circ T^2)P_2 f, f \rangle \), \(P_1 \) and \(P_2 \) are the projections of \(L^2(\lambda) \) on to \(\overline{R(C)} \) and \(\overline{R(C^2)} \) respectively. Thus \(C^* \) is of class \(Q^* \) if and only if \(\langle (f_0^{(2)} \circ T^2)P_2 f, f \rangle - 2(f_0 f, f) + \langle f, f \rangle \geq 0 \), that is \((f_0^{(2)} \circ T^2)P_2 - 2f_0 + 1 \geq 0 \), a.e.

3. Weighted Class \(Q^* \) Composition Operator

The following proposition is well known.

Proposition 3.1.\[5\] For \(w \geq 0 \)

i) \(W^* W f = f_0 [E(w^2)] \circ T^{-1} f \).

ii) \(WW^* f = w(f_0 \circ T) E(wf) \).
The following theorem characterize the weighted class Q^* composition operators.

Theorem 3.2. If $T^{-1}\Sigma=\Sigma$. Then W is of class Q^* if and only if $f_0^{(2)}(w_2^2) \circ T^{-2} - 2w^2(f_0 \circ T) + 1 \geq 0$ a.e

Proof. We have $W^k f = w_k(f \circ T^k)$ and $(W^*)f = f_0^{(k)}E(w_kf) \circ T^{-k}$. Thus $W^*W^k = f_0^{(k)}E(w_k^2) \circ T^{-k}f$. We have $|W^*f| = vE(vf)$ where $v = \frac{w^2\sqrt{f_0T}}{|E(w\sqrt{f_0T})|^4}$. If $T^{-1}\Sigma=\Sigma$ then E becomes identity operator and hence $WW^*f = v^2f = w^2(f_0 \circ T)f; f \in L^2$.

Since W is of class Q^*, $W^2W^2 - 2WW^* + 1 \geq 0$. Thus $\langle (W^2W^2 - 2WW^* + 1)f, f \rangle \geq 0$ for all $f \in L^2$. It follows that $\int_E(f_0^{(2)}E(w_k^2) \circ T^{-2} - 2w^2(f_0 \circ T) + 1)d\lambda \geq 0$ for every $E \in \Sigma$. That is $f_0^{(2)}E(w_k^2) \circ T^{-2} - 2w^2(f_0 \circ T) + 1 \geq 0$ a.e.

The Aluthge transform of T is the operator \tilde{T} given by $\tilde{T} = |T|\frac{1}{2}U|T|^\frac{1}{2}$ was introduced in [1] by Aluthge. The idea behind the Aluthge transform is to convert an operator into another operator which shares with the first one some spectral properties but it is closed to being a normal operator. More generally we may form the family of operators $A_r : 0 < r \leq 1$ where $A_r = |A|^{1-r}U|A|^{1-r}$. For a composition operator C, the polar decomposition is given by $C = U|C|$ where $|C|f = \sqrt{f_0f}$ and $Uf = \frac{1}{\sqrt{f_0f}} f \circ T$. In [4] Lambert has given general Aluthge transformation for composition operators as $C_r = |C|U|C|^{1-r}C_r f = (f_0 \circ T)^\frac{r}{2} f \circ T$. That is C_r is weighted composition operator with weight $\pi = (f_0 \circ T)^\frac{r}{2}$ where $0 < r < 1$. Since C_r is a weighted composition operator it is easy to show that $|C_r|f = \sqrt{f_0|E(\pi)^2 \circ T^{-1}|f}$ and $|C_r^*|f = vE(vf)$ where $v = \frac{\pi \sqrt{f_0T}}{|E(\pi \sqrt{f_0T})|^4}$. Also we have

$C^k f = \pi_k(f \circ T^k)$,
$C^{*k} f = f_0^{(k)}E(\pi_k f) \circ T^{-k}$,
$C_r^{*k} C^{-k} f = f_0^{(k)}E(\pi_k^2) \circ T^{-k}f$.

Corollary 3.3. If $T^{-1}\Sigma=\Sigma$, C_r is class Q^* if and only if $f_0^{(2)}(\pi_2^2) \circ T^{-2} - 2\pi^2(f_0 \circ T) + 1 \geq 0$.

Proof. Since C_r is weighted composition operator with weight $\pi = (f_0 \circ T)^\frac{r}{2}$, we get the desired result.

B. P Duggal [8] described the second Aluthge Transformation of T by $\tilde{T} = |T|\frac{1}{2}V|T|^\frac{1}{2}$, where $\tilde{T} = V|T|$ is the polar decomposition of T. Now we consider $C_r = |C_r|\frac{1}{2}V|C_r|^\frac{1}{2}$, where $C_r = V|C_r|$ is the polar decomposition of the generalized Aluthge transformation $C_r : 0 < r < 1$. We have $|C_r|f = \sqrt{Jf}$, where $J = f_0E(\pi^2) \circ T^{-1}$.
Composition operators of class Q^*

\[\tilde{C} = |C_r|^{1/2} V |C_r|^{1/2} = \sqrt{J^{1/2}} V (\sqrt{J^{1/2}} f) = \sqrt{J^{1/2}} \pi (\chi_{\sup J^{1/4}} J^{1/4} f) \circ T = J^{1/4} \pi (\chi_{\sup J^{1/4}} J^{1/4} f) \circ T (f \circ T) \]

We see then that \(\tilde{C} \) is a weighted composition operator with weight \(w' = J^{1/4} \pi (\chi_{\sup J^{1/4}} J^{1/4} \circ T) \).

Corollary 3.4. If \(T^{-1} \Sigma = \Sigma \), then \(\tilde{C} \) is class \(Q^* \) if and only if \(f_0^{(2)} (w'_{\Sigma}^2) \circ T^{-2} - 2(w')^2 (f_0 \circ T) + 1 \geq 0 \) a.e.

Proof. Since \(\tilde{C} \) is weighted composition operator with weight \(w' = J^{1/4} \pi (\chi_{\sup J^{1/4}} J^{1/4} \circ T) \), we get the desired result.

References

Received: November, 2009