On the Generalized Struve Transformation

S.K.Q. Al-Omari

Department of Applied Sciences, Faculty of Engineering Technology
Al-Balqa Applied University, Amman 11134, Jordan
shrideh2001@yahoo.co.in

Abstract

We study the struve transformation on certain class of generalized functions. The generalized Struve transformation is defined and its derivatives are obtained.

Keywords: Struve Transformation, extended Struve Transformation, Test Function Space, Ultradistributionspace

1 Introduction

The classical Struve transformation of a function \(f \) is defined by

\[
(\nu f)(x) = \int_0^\infty (xt)^\frac{\nu}{2} (xt) f(t) \, dt
\]

(1.1)

where \(\nu(z) \) is the struve function of order \(\nu \), given by [cf. Agarwal and VijayKumar[7] pp.37-38]

\[
\Gamma\left(\nu + \frac{1}{2}\right) \nu(z) = \frac{2 (\frac{z}{2})^\nu}{\sqrt{\pi}} \int_0^{\frac{\pi}{2}} \sin(z \cos \varphi) (\sin \varphi)^{2\nu} d\varphi, \text{Re}(\nu) > -\frac{1}{2}
\]

(1.2)

or

\[
\Gamma\left(\nu + \frac{1}{2}\right) \nu(z) = \frac{2 (\frac{z}{2})^\nu}{\sqrt{\pi}} \int_0^{\frac{\pi}{2}} \sin(z \cos \varphi) (\sin \varphi)^{2\nu} d\varphi, \text{Re}(\nu) > -\frac{1}{2}
\]

(1.3)
for all values of \(v \).

Let \(a \) be fixed positive real number and \(I \) be the infinite open interval \((0, \infty)\).

The generalized struve transformation in [7] was investigated on the space \(\hat{H}_a \) of distribution which function as dual of the space \(H_a \) of all in infinitely smooth functions \(\varphi (x) \) on \(I \), such that

\[
\gamma_k (\varphi) = \sup_{t \in I} \left| e^{-at} (tD)^k \varphi (t) \right| < \infty. \tag{1.4}
\]

We have, in this paper, studied the struve transformation on certain space of generalized function which are wider than the Schwartz’ space \(\hat{E} \) of distributions [6, 8].

(see [7] for further properties).

Let \(\Delta \) be a compact subset of \(I \). Denote by \(\mathcal{L} (n_i, n, I) \) the set of all complex valued infinitely smooth functions such that

\[
\sup_{x \in \Delta} \left| D^k \varphi (n) \right| \leq Nn_i n^i,
\]

for some positive constant \(N \) and all \(n_i \).

\[
\eta_{\Delta, k} (\varphi) = \sup_{t \in k} \left| \frac{D^k \varphi (t)}{Nn_i n^i} \right|
\]

We assign to \(\mathcal{L} (n_i, n, I) \) the topology generated by the collection of seminorms \(\{\eta_{\Delta, k}\} \), where \(\Delta \) varies through all compact subset of \(I \) and \(k \) traverses through non-negative integers in \(\mathbb{R}^n \), where

\[
\eta_{\Delta, k} (\varphi) = \sup_{t \in k} \left| \frac{D^k \varphi (t)}{Nn_i n^i} \right|
\]

The space \(\mathcal{L} (n_i, n, I) \), equipped with the topology generated by the countable collection of seminorms \(\{\eta_{\Delta, k}\}_{k=0}^\infty \), is a complete countably multinormed space. A sequence \(\{\varphi_v\} \) in \(\mathcal{L} (n_i, n, I) \) converges to \(\varphi \) if and only if all \(\varphi_v \) and \(\varphi \) are in \(\mathcal{L} (n_i, n, I) \) and for each non-negative integers \(k \), \(\{D^k \varphi\}_{v=1}^\infty \) converges to \((D^k \varphi) \) uniformly on every compact subset of \(I \) in the sense of topology of \(\mathcal{L} (n_i, n, I) \). \(\hat{\mathcal{E}} (n_i, n, I) \) is the dual space when endowed with its weak topology. However, the space of generalized functions, obtained above, is, indeed, consists of ultradistributions of slow growth similar to that obtained in
On the Generalized Struve Transformation

1177

[2, 3, 4, 5], whereas, the ultradistribution space \(Z' \) in [1] functions as a dual of \(Z \) of all Fourier transforms of test functions in \(D \) (the space of test functions of compact support).

If \(\nu (\mathbb{R}^n) \) is a space of test functions \(\varphi \) on \(\mathbb{R}^n \) (\(n \) – dimensional Euclidean space) \(\dot{\nu} (\mathbb{R}^n) \) is called the dual space of \(\nu \) (the set of all linear continuous functional on \(\nu \)), then the elements of \(\dot{\nu} \) are called generalized functions. A generalized function \(f \in \dot{\nu} \) is said to have support in a set \(S \) if \(\langle f, \varphi \rangle = 0 \) whenever \(\varphi \in \nu \) has support in \(\mathbb{R}^n \setminus S \). The smallest closed set having this property is called the support of \(f \), written as \(\text{supp} f \). When \(\text{supp} f \) is compact (a space is compact if and only if each collection of closed sets contained in that space has a nonempty intersection if it has the finite intersection property), the function \(f \) is said to be a generalized function of compact support.

2 Testing function space \(\mathcal{L}(n_i, n, I) \)

Lemma 2.1. Let \(\Delta \) be a compact subset of \(I \), for real numbers \(x \) and \(t \) in \(\Delta \) and \(\nu > -\frac{1}{2} \),

(i) \((xt)^{\frac{\nu}{2}} (xt) \in \mathcal{L}(n_i, n, I) \)

(ii) \(D^m_x \left[(xt)^{\frac{\nu}{2}} (xt) \right] \in \mathcal{L}(n_i, n, I), m = 1, 2, 3, \ldots \)

Proof. \(\Delta \) and \(\nu \) have usual meaning then there be a constant \(C = \inf \Delta \), for the non-negative integers \(k \), such that

\[
\left| D^k_t \left\{ (xt)^{\frac{\nu}{2}} (xt) \right\} \right| \leq \frac{\sum_{j=0}^{k} \alpha_j (\nu) C^{-k} (xt)^{\frac{j}{2}} (xt)}{Nn_in^i} \tag{2.1}
\]

where \(\alpha_j (\nu) \) is a polynomial in \(\nu \).

The right-hand said of (2.1) is finite for all real \(x \) and \(t \), in \(\Delta \), ranges over all compact subset of \(I \). Upon considering the supermum over all \(x, t \in \Delta \), we have

\[\eta_{\Delta,k} \left[(xt)^{\frac{\nu}{2}} (xt) \right] < \infty \]

Similarly, for non-negative integers \(k \) and \(m \),

\[
\left| D^k_t \left\{ D^m_x \left[(xt)^{\frac{\nu}{2}} (xt) \right] \right\} \right| \leq \sum_{j=0}^{k} \sum_{i=0}^{m} \frac{\alpha_{i,j} (\nu) C^{-(m+k)} (xt)^{\frac{j+i}{2}} (xt)}{Nn_in^i} \tag{2.2}
\]

where \(\alpha_{i,j} (\nu) \) is a polynomial in \(\nu \). Multiply both sides by \(\frac{1}{Nn_in^i} \) and let \(\Delta \) vary through compact subsets of \(I \), by considering the supremum, we observe that
\[\eta_{\Delta,k} \left\{ D^m_x \left[(xt)^{\frac{1}{\nu}} (xt) \right] \right\} < \infty \]

for all \(m = 1, 2, 3, \ldots \).
This completes the proof of the theorem.

Definition 2.2 Let \(f \in \mathcal{L} (n_i, n, I) \) be the space of generalized functions supported in \(I = (0, \infty) \).

By virtue of lemma 1, we define the generalized struve transformation of \(f \) as the map of the non-zero real number \(x \), given as

\[S(x) = \left\langle f(t), (tx)^{\frac{1}{\nu}} (xt) \right\rangle, \quad \nu > -\frac{1}{2}, t > 0 \quad (2.3) \]

Theorem 1. Let \(f \in \mathcal{L} (n_i, n, I) \) and \(\Delta \) be a compact subset of \(I \). for every \(x \) and \(t \) in \(\Delta \),

\[D^m_x S(x) = \left\langle f(t), D^m_x \left\{ (tx)^{\frac{1}{\nu}} (xt) \right\} \right\rangle, \quad m = 1, 2, \ldots \quad (2.4) \]

where \(S(x) \) is defined in (2.3).

Proof. In what follows, we attempt to prove this theorem by the method of induction on \(m \).

For \(m = 0 \), (2.4) obviously reduce to (2.3) and that is trivial. Let the relation (2.4) is true for \((m-1) \) derivatives, let \(\partial x \neq 0 \) and \(x \) be fixed, then

\[
\begin{align*}
\frac{1}{\partial x} \left[D^{m-1}_x S(x + \partial x) - D^{m-1}_x S(x) \right] - \left\langle f(t), D^m_x \left\{ (tx)^{\frac{1}{\nu}} (xt) \right\} \right\rangle \\
= \frac{1}{\partial x} \left[D^{m-1}_x \left\langle f(t), ((x + \partial x) t)^{\frac{1}{\nu}} (x + \partial x) t \right\rangle - D^{m-1}_x \left\langle f(t), (tx)^{\frac{1}{\nu}} (xt) \right\rangle \right] \\
- \left\langle f(t), D^m_x \left\{ (tx)^{\frac{1}{\nu}} (xt) \right\} \right\rangle \\
= \left\langle f(t), \frac{1}{\partial x} \left[D^{m-1}_x h((x + \partial x) t) - D^{m-1}_x h(x t) \right] - D^m_x h(x t) \right\rangle \\
eq \left\langle f(t), \varphi_{\partial x}(t) \right\rangle,
\end{align*}
\]

where

\[h(x t) = (xt)^{\frac{1}{\nu}} (xt) \quad (2.5) \]

and

\[\varphi_{\partial x}(t) = \frac{1}{\partial x} \left[D^{m-1}_x h((x + \partial x) t) - D^{m-1}_x h(x t) \right] - D^m_x h(x t) \quad (2.6) \]
Indeed, Fundamental theorem of calculus and dividing the m—derivatives into $(m - 1)$ and first derivatives, from (2.6) we obtain

$$
\varphi_{\partial x} (t) = \frac{1}{\partial x} \int_x^{x+\partial x} D^m_u h(ut) \, du - \frac{1}{\partial x} \int_x^{x+\partial x} D^m_x h(xt) \, du.
$$

$$
= \frac{1}{\partial x} \int_x^{x+\partial x} [D^m_u h(ut) - D^m_x h(xt)] \, du
$$

$$
= \frac{1}{\partial x} \int_x^{x+\partial x} \int_x^u \left[D^m_u h(\eta t) - D^m_x h(\eta t) \right] d\eta.
$$

Now, to complete the proof of the theorem, it is enough to be shown that $\varphi_{\partial x} (t)$ tends to zero as $\partial x \to 0$ in the topology of $L(n, n, I)$. thus, we have

$$
\left| \frac{D^n \varphi_{\partial x} (t)}{Nn_i n^i} \right| = \left| \frac{1}{\partial x} \int_x^{x+\partial x} \int_x^u D^{m+1}_\eta \{ D^k \eta (\eta t) \} \, d\eta \right| \leq \left| \partial x \right| \left(\inf_{\Delta} \sup_{t \in \Delta} \frac{\left| \sum_{j=0}^{k} \sum_{i=0}^{m+1} \alpha_{j,i} (v) C^{-(m+k+1)} (\eta t)^{j+i} (\eta t) \right|}{Nn_i n^i} \right),
$$

$$
C = \inf \Delta
$$

Summations in the relation (2.7) are bounded and thus, $\sup_{t \in \Delta} \left| \frac{D^n \varphi_{\partial x} (t)}{n n_i n^i} \right|$ tendes to zero as $\partial x \to 0$. Indeed, $\varphi_{\partial x} (t)$ and all of its derivatives converge uniformly to zero on every compact subset of I, C being a constant. This completes the proof of the theorem.

References

Received: January, 2010