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Abstract

In this paper, a conservative but tractable approximation method
for outage-based power allocation over composite lognormal shadowing
Nakagami fading channels (with independent interference) is proposed.
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1 Introduction

In wireless communication systems, an important quality of service (QoS) re-
quirement is that the outage probability of each transmitter/receiver pair is
kept below a given level [9]. The problem of minimizing power consumption
with these outage probability specifications over wireless fading channels can
be posed as a stochastic program. In general, it is challenging to solve this
stochastic program exactly, except for the special case of Rayleigh fading chan-
nels [5].

In this paper, we consider the problem of power allocation with outage
probability specifications, over composite lognormal shadowing Nakagami fad-
ing channels (with independent interference). We formulate this problem as a
specific type of (chance-constrained) stochastic programming problem, called
the chance-constrained geometric program (CCGP) [4]. In general it is very
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hard to solve this chance-constrained GP; instead, a conservative approxima-
tion, which is a (deterministic) GP, is solved to find a suboptimal solution of
the CCGP. A numerical example is given to demonstrate the effectiveness of
the proposed approximation scheme.

2 Nakagami-Lognormal Fading Model

2.1 Prerequisites

A (two-parameter) gamma distributed random variable X with the scale pa-
rameter θ > 0 and the shape parameter k > 0, denoted by X ∼ Gamma(k, θ),
has the probability density function

fX(x) =
xk−1

θkΓ(k)
exp

(
−x
θ

)
, x > 0,

where Γ(·) is the gamma function. Note that the scale parameter θ can be
represented in terms of the rth moment of X as

θ = (E(Xr)Γ(k)/Γ(k + r))1/r, r > 0, r ∈ Z.

The rth negative moment of the gamma random variable X exists only for
r < k; in this case, it is given by

E(X−r) =
Γ(k − r)
θrΓ(k)

, k > r > 0, r ∈ Z. (1)

(See, e.g., [1].)

The family of Nakagami (or Nakagami-m) distributions [7] has a shape
parameter m ≥ 1/2 and a scale parameter Ω > 0 controlling the distribution
spread. The Nakagami distribution is related to the gamma distribution in the
way that, given X ∼ Gamma(k, θ),

X1/2 ∼ Nakagami(m,Ω), m = k, Ω = kθ = EX.

Let LN (µ, σ2) denote the (two-parameter) lognormal distribution. Given V 
∼ LN (µ, σ2), the arbitrary power of V is still lognormally distributed and its 
expectation is given by

EV r = exp
(
rµ+ r2σ2/2

)
, r ∈ R. (2)
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2.2 The model

In this paper the following setting for shadowed fading channels is consid-
ered. We have n transmitters, labelled 1, . . . , n, which transmit at (positive)
power levels P1, . . . , Pn respectively. We also have n receivers, labelled 1, . . . , n;
receiver i is meant to receive the signal from transmitter i, i.e., the chan-
nel between transmitter i and receiver j is undesired (interfering) if i 6= j.
The (i, j)th channel refers to the channel from the transmitter j to the re-
ceiver i. At the receiver i the power received from transmitter, denoted by
Rij, is given by

Rij = GijCijPj. (3)

Here the components Gij, which is positive, represents the path gain (not
including fading) of the (i, j)th channel. We assume that Gij are constant, i.e.,
they do not change (significantly) over each power interval. In addition, we
also assume that Cij are independent.

In a Nakagami-lognormal fading environment, the distribution of the com-
pound shadowing-fading factor Cij in (3), due to Nakagami fading with log-
normal shadowing, can be represented as

Cij ∼ Gamma (mij,Ωij/mij)
∧
Ωij

LN (µij, σ
2
ij), (4)

that is,

Cij|Sij ∼ Gamma (mij, Sij/mij) , Sij ∼ LN (µij, σ
2
ij), (5)

or equivalently,

C
1/2
ij ∼ Nakagami (mij,Ωij)

∧
Ωij

LN (µij, σ
2
ij),

where mij is the Nakagami shape factor (or called the fading severity index)
of the (i, j)th channel, and Ωij = E(Cij|Sij = Ωij); see, e.g., [2]. (Here the
“mixing” operator f

∧
α

g mixes the distributions f and g and returns a (com-

pound) distribution which is distributed as f with the quantity α (of f) being

a random variable distributed as g.) Note that C
1/2
ij and Cij represent the

fading “envelope” and “squared-envelope” of the (i, j)th channel respectively.

It follows from the law of iterated expectations that, for positive integers r
satisfying mij > r, the rth negative moment of the gamma-lognormal mix-
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ture Cij exists and is given by

EC−rij = E(E(C−rij |Sij))

= E

((
mij

Sij

)r
Γ(mij − r)

Γ(mij)

)
=
mr
ijΓ(mij − r)

Γ(mij)
ES−rij

=
mr
ijΓ(mij − r)

Γ(mij)
exp

(
1

2
r2σ2

ij − rµij
)
. (6)

(Here (1) and (2) are applied.) The rth positive moment of Cij can be derived
in the same way:

ECr
ij = E

((
Sij
mij

)r
Γ(mij + r)

Γ(mij)

)
=

Γ(mij + r)

mr
ijΓ(mij)

exp

(
1

2
r2σ2

ij + rµij

)
. (7)

Obviously, since Cij are positively distributed, (positive and negative) mo-
ments of Cij, if exist, are positive as well.

3 Power Allocation via Geometric Program-

ming

Let R++ denote the set of positive real numbers. A real valued function of the
form

f (x) =
K∑
k=1

ck

n∏
j=1

x
ajk
j ,

where ck> 0 and ajk ∈ R, is called a posynomial. An optimization problem of
the form

minimize f0(x)
subject to fi(x) ≤ 1, i= 1, . . . ,m,

where x ∈ Rn
++ is the optimization variable and f0, f1, . . . , fm are posyno-

mials, is called a (posynomial) geometric program (GP). GPs (in posynomial
form) can be reformulated as convex problems and hence can be globally and
efficiently solved. (For more on GP, see the tutorial [3] and references therein.)

3.1 Outage-based power minimization

In the fading channel model (3), the signal power at the sth receiver isGssCssPs,
subject to the total interference power

∑
k 6=sGskCskPk. For the sth receiver/transmitter
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pair, its noise-plus-interference-to-signal ratio (NISR) is defined as the recip-
rocal of its SINR, i.e.,

Ns(Pi;Cij) =

(
GssCssPs

βs +
∑

k 6=sGskCskPk

)−1

= βsG
−1
ss C

−1
ss P

−1
s +

∑
k 6=s

GskG
−1
ss CskC

−1
ss PkP

−1
s , (8)

where βs ≥ 0 represents the noise power at the sth receiver, assumed to be
constant. (For convenience, we will use the newly defined NISR, instead of the
commonly used SINR, as the measure comparing the level of a desired signal
with the level of interference power plus noise.)

One common QoS requirement is that, for each receiver/transmitter pair,
the SINR must be kept above a given threshold (Nmax

s )−1. This QoS require-
ment can be represented as

Ns ≤ Nmax
s , s = 1, . . . , n.

The outage probability of the sth receiver/transmitter pair is now given by

Os(P1, . . . , Pn) = Prob (Ns > Ns
max) , s = 1, . . . , n. (9)

Here, Prob(A) is the probability of event A. The outage probability can be
interpreted as the fraction of time that the sth transmitter/receiver pair expe-
riences an outage due to fading. In our expression for the outage probability
Os, statistical variations of both received signal power and received interference
power are taken into account.

The QoS requirement we consider in this paper is that the outage probabil-
ity (of the sth receiver/transmitter pair) must be kept below a given threshold
omax
s :

Os(P1, . . . , Pn) ≤ omax
s , s = 1, . . . , n.

The problem of finding the minimum power allocation with the above outage
probability constraints can be formulated as

minimize
∑n

i=1 Pi
subject to Os(P1, . . . , Pn) ≤ omax

s , s = 1, . . . , n.
(10)

In contrast to the deterministic power control problem (see, e.g., [8]), the
stochastic power control problem (10) appears to be challenging to solve ex-
actly. Even evaluating the outage probability of individual channel is already
difficult, especially for the channels with compound fading and shadowing (for
example, the composite Nakagami-lognormal channels we consider in this pa-
per). As an important special case, for interference-limited wireless networks
with Rayleigh fading (in both the desired and interference signals), this prob-
lem can be cast as a (deterministic) geometric program and hence can be solved
exactly; the reader is referred to [5] for details.
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3.2 Conservative approximation via GP

In the following we describe an outage-based power allocation method for
Nakagami-lognormal channels. In §2.2, we have assumed that the compound
shadowing-fading components Cij in (3) are independent. Note that the NISR (8)
has the form of a posynomial in P1, . . . , Pn, with random coefficients. Then
the stochastic minimization problem (10), rewritten as

minimize
∑n

i=1 Pi
subject to Prob ((Nmax

s )−1Ns(Pi;Cij) > 1) ≤ omax
s , s = 1, . . . , n,

(11)

is inherently a chance-constrained GP. Applying the approximation procedure
illustrated in [4] to this CCGP, we can obtain a conservative approximation,
i.e., the so-called Cantelli approximation

minimize
∑n

i=1 Pi
subject to (Nmax

s )−1 ENs(Pi;Cij) + γst
1/2
s ≤ 1, s = 1, . . . , n,

t−1
s (Nmax

s )−2 VarNs(Pi;Cij) ≤ 1, s = 1, . . . , n,

(12)

where Pi > 0, ti > 0, i = 1, . . . , n are optimization variables, and

γs =
√

1/omax
s − 1,

ENs(Pi;Cij) = βsG
−1
ss EC−1

ss P
−1
s +

∑
k 6=s

GskG
−1
ss ECsk EC−1

ss PkP
−1
s , (13)

VarNs(Pi;Cij) = β2
sG
−2
ss VarC−1

ss P
−2
s +

∑
k 6=s

G2
skG

−2
ss Var(CskC

−1
ss )P 2

kP
−2
s

+ 2
∑
k 6=s

βsGskG
−2
ss Cov(C−1

ss , CskC
−1
ss )PkP

−2
s

+ 2
∑

1≤k<`≤n
k 6=s, 6̀=s

GskGs`C
−2
ss Cov(CskC

−1
ss , Cs`C

−1
ss )PkP`P

−2
s . (14)

It is a simple exercise to show that the values of variance and covariance terms
here can be computed with (6) and (7), using

VarC−1
ss = EC−2

ss − (EC−1
ss )2, (15)

Var(CskC
−1
ss ) = EC2

sk EC−2
ss − (ECsk)

2(EC−1
ss )2, (16)

Cov(C−1
ss , CskC

−1
ss ) = ECsk VarC−1

ss , (17)

Cov(CskC
−1
ss , Cs`C

−1
ss ) = ECsk ECs` VarC−1

ss . (18)

It follows from (13) that ENs (if exist) are posynomials in P1, . . . , Pn. In
addition, since the covariance terms in (14) are positive, VarNs (if exist) are
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also posynomials in P1, . . . , Pn. By the way, although the approximation (12)
is conservative (in the sense that its feasible set is a subset of that of (11)), it
is a (deterministic) geometric program and hence can be solved globally.

To ensure the existence of ENs and VarNs (for bounded Pi), we techni-
cally assume that, for all the desired receiver/transmitter pairs, the first two
negative moments of the gamma-lognormal mixture Cii exist or, equivalently
by (6), the condition

mii > 2, i = 1, . . . , n (19)

holds. (In this cases, it follows from (15)–(18) that all the variance and covari-
ance terms in (14) exist.) This assumption is mild in general, since we often
use the Nakagami distribution to model fading conditions that are more severe
than Rayleigh fading (which corresponds to the case with mij = 1); see, e.g.,
[6]. We conclude that, for Nakagami-lognormal channels satisfying the assump-
tion (19), suboptimal feasible solutions of the stochastic power minimization
problem (11) can be obtained by solving the GP (12).

4 Numerical example

In this example we consider a Nakagami-lognormal channel with 50 trans-
mitters and receivers. Each shadowing-fading factor Cij has the compound
distribution (4) with mij = 5, and the underlying lognormal shadowing factor
Sij in (5) has mean 0 dB and standard deviation 5 dB. We take all the path
gains Gii to be one.

We assume that this Nakagami-lognormal channel is sparse, in the sense
that each desired channel is interfered only by N neighboring interference
channels. In this example, we set N = 5. For each transmitter/receiver pair,
the rule to choose neighboring interferers is trivial and can be illustrated as
follows. For example, for the first receiver, the 5 neighboring interferers are
the transmitter 49, 50, 2, 3 and 4. For the 25th receiver, the interfering signals
come from the transmitter 23, 24, 26, 27 and 28.

We consider the NISR threshold Nmax
s = 0.5, 0.6 and 0.7 respectively.

(They are assumed to be the same for each transmitter/receiver pair.) For
each NISR threshold, we vary the outage probability threshold omax

s (which,
again, is assumed to be the same for each transmitter/receiver pair) from
3 × 10−2 to 9 × 10−2. For each value of omax

s , we generate 50 instances of
the power minimization problem (11), in which all the noise powers βs and
cross gains Gij from interfering neighbors are selected as independent random
variables uniformly distributed between 10−4 and 10−5. (We take the cross
gains from non-neighboring interferers to be zero.) Then we compute the
total transmitter power P1 + · · · + P50 for each problem instance using the
(conservative) deterministic approximation method proposed in §3.2.
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We summarize the numerical results as follows. For a fixed NISR threshold,
the total transmitter power increases as lower outage probability thresholds
are assigned. In this example, the total transmitter power is sensitive to the
NISR threshold when omax

s is sufficiently small. For instance, with Nmax
s = 0.6

and 0.7, the trade-off curves between the total transmitter power and the
outage probability threshold essentially stay flat (that is, the total power is
quite insensitive to the outage probability threshold). However, for a bit lower
NISR threshold Nmax

s = 0.5, the total power increases drastically as omax
s

decreases below 5×10−2. Actually, the corresponding (deterministic) geometric
program (12) becomes infeasible quickly for omax

s below 3× 10−2. We conclude
that, in this situation, the “price of robustness” is high.

5 Conclusion

In this paper, we have described a power control scheme for Nakagami fading
channels with lognormal shadowing. With a good compromise between com-
putational complexity and performance, the proposed conservative approxi-
mation method, which is to solve a GP, can efficiently find a power allocation
that meets the outage probability specifications.
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