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Abstract 

 

This paper presents a research replacing a delayed object by using first-

order Pade approximation model in order to solve the problem of optimal control 

for a distributed parameter system with time delay (DPSTD). The system is 

applied to a specific one-sided heat-conduction system in a heating furnace to 

control temperature for a slab following the most accurate burning standards.  

The aim of problem is to find an optimal control signal so that the error between 

the distribution of real temperature of the object and the desired temperature is 

minimum after a given period of time T. 
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1. Introduction 
 

Theoretically, Pade approximation has been studied for a long time and mainly 

applied in finding solutions of differential algebraic equations.  

Pade approximaton can offer a function approximation having more advantages 

than Taylor expansion, especially with the objects having large time delay 

compared to its time constant. The paper presents a research replacing a delayed 

object by using first-order Pade approximation model in order to solve the 

problem of optimal control for a distributed parameter system with time delay 

(DPSTD), typically a controlled object described by heat transfer equation, which 

is one of the physical processes with distributed parameters.   

 

2. Pade Approximation Method 
 

Suppose the function f(x) is expanded under an exponential sequence: 
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 Move the function into Pade’ expansion as follows: 
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The Pade approximation must be satisfied so that if the analysis of the right-hand 

side (2) according to the Taylor sequence at near zero-point, its first element     

(m+ n)  is coincided with (m+n) elements of the left-hand side: a0, a1, ……[1] 

In order to get highly accurate approximation, m = n or m=n+1 is ussually 

chosen [2]. After analysing as (2), we need determine (m+n+1) unknowns:         

p0, p1,…,pm ; q0, q1,…,qn.. From Eq. (2), we offer a system of equations to find 

these unknowns as follows: 
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After solving the system (4), we get: q0, q1,…,qn, , then replace into sysytem (3), 

we can find: p0, p1,…,pm 
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An delayed object in the forms of 
s

e


can be expanded into an exponential 

sequence: 
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Thus, compare with the left-hand side of (2), we have: 
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Substituting the coefficients ak (k=0,1,2...) from (5) and (6) into (3) and (4). 

Solving these equation systems, we obtain the result of Pade approximation, in the 

case, m = n as follows: 
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where                               ( 1) ( )
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with:  H(0) = 1;   n: a number of orders need to be replaced 

- With n = 1, we have the first –order Pade approximation: 
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- With n = 2, we have the second–order Pade approximation: 
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-With n =3,4,…,we have higher-order Pade approximations 

Consider an object with time delay: 
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u t k t
dt

                                        (11)    

where  is the time constant and  is the time delay of the object, k is gain 

coefficient. We have conducted simulation by Matlab Simulink for these 

approximate forms. In the process of simulation, we changed the ratio / by 

keeping  = constant and  changed, finally we draw the following conclusions: 
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- If / ≥ 10, we should use expansion following exponential sequence 

- If 6 ≤ / < 10, we should use Pade expansion with  n =1 

- If 2 ≤ / < 6, we should use Pade expansion with  n =2 

 

3. The problem of optimal control 
 

3.1. The object model 

 

As a typical distributed parameter system, the one-side heat conduction 

system in a furnace is considered. The process of one-side heating of the object in 

a furnace is described by the partial differential equation, as follows [3],[4], [6]: 
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where q(x,t), the temperature distribution in the object, is the output needing to be 

controlled, depending on the spatial coordinate  x with 0  x   and the time t 

with 0  t  T,  a is the temperature-conducting factor (m2/s),  is the thickness of 

object (m), T is the allowed burning time (s) 

The initial and boundary conditions are given in [3],[4],[6]. 
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with  as the heat-transfer coefficient between the furnace space and the object 

(w/m2 .0C),   as the heat-conducting coefficient of material (w/m .0C), and u(t) as 

the temperature of the furnace respectively (0C).      

The relationship between the provided power for the furnace w(t) and the 

temperature of the furnace u(t) is ussually the first order inertia system with time 

delay [4]. 

Hence, the relationship between w(t) and u(t) is described as the following 

equation: 
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where   is the time constant,  is the time delay; k is the static transfer 

coefficient; u(t) is the temperature of the furnace and w(t) is the provided power 

for the furnace (controlled function of the system). 



 

Applying pade approximation model in optimal control problem                  23 

 

 

The temperature u(t) of the furnace is controlled by power w(t), the 

temperature distribution q(x,t) in the object is controlled by means of the fuel flow 

u(t), this temperature is controlled by power w(t). Therefore, the temperature 

distribution q(x,t) will depend on power w(t). 
 

3.2. The objective function and the constrained conditions 

 

In this case, the problem is set out as follows: we have to determine a control 

function w(t) with (0  t  T) so as to minimize the temperature difference 

between the distribution of desired temperature q*(x) and real temperature of the 

object q(x,T) at time t = T. It means at the end of the heating process to ensure 

temperature uniformity throughout the whole material: 
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 The constrained conditions of the control function is: 

1 2w(t)A A                                                     (18)                                       

  

4. The solution of problem 
 

The process of finding the optimal solution includes 2 steps: 

- Step 1: Find the relationship between q(x,t) and the control signal w(t). Namely, 

we have to solve the equation of heat transfer (relationship between u(t) and 

q(x,t)) with boundary condition type-3 combined with ordinary differential 

equation with time delay (relationship between w(t) and u(t)) 

- Step 2: Find the optimal control signal w*(t) by substituting q(x,t) found in the 

first step into the function (17), after that finding optimal solution w*(t)  
 

4.1. Find the relationship between q(x,t) and the control signal w(t) 

 

To solve the partial differential equation (12) with the initial and the boundary 

conditions (13), (14), and (15), we apply the Laplace transformation method with 

the time parameter t. On applying the transform with respect to t, the partial 

differential equation is reduced to an ordinary differential equation of variable x. 

The general solution of the ordinary differential equation is fitted to the boundary 

conditions, and the final solution is obtained by the application of the inverse 

transformation.  

Transforming Laplace (12), we obtained: 
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where:  ( , ) ( , )Q x s L q x t  

After transforming the initial and boundary conditions (13), (14) and (15), we 

have: 
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From Eq. (16), assuming the delayed object satisfy the condition: 6 ≤ / <10.    

To solve this problem, the authors [4] aproximated the delayed object by the first 

order inertia system following Taylor approximation. This paper offers an 

approximation method with higher accuracy. Particularly, the first order inertia 

system with time delay is replaced by first-order Pade  appximation,  

Transforming Laplace (16), we obtained: 
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where  

 ( ) ( )U s L u t ;   W( ) w( )s L t  

 

After transforming, we have the function: 
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Putting 

               

 

. 1 . ( )
2

( , )

1 . 1 . . . .
2

s s
k ch x

a
G x s

s

s sa
s s sh ch

a a





   



  
   

    
 
             
      
 
 

            (24) 

 

We have:  Q(x,s) = G(x,s) .W(s)                                                                    (25) 

 

From (23), (24), according to the convolution theorem, the inverse transformation 

of (25) is given by 
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Therefore, if we know the function g(x,t), we will be able to calculate the 

temperature distribution q(x,t)  from control function w(t). To find q(x,t) in (28), 

we need to find the function (29). Using the inverse Laplace transformation of 

function G(x,s) we have the following result: 
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where i is calculated from the formula: i
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 i  is the solution of the equation: 
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 Bi is the coefficient BIO of the material 
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In Eq. (30): 

 

   is the heat-transfer factor (w/m2 .0C) 

  is the heat-conducting factor of object (w/m. 0C) 

  is the thickness of object (m), 

 a is the temperature-conducting factor (m2/s) 

  is the time delay of the furnace (s) 

   is the time constant of the furnace (s) 

 k is the static transfer coefficient of the furnace 
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4.2. Find the optimal control signal w*(t) by using numerical method 

 

To find the w*(t), we have to minimize the objective function (17), it means: 
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and q*(x) is the desired temperature distribution; q(x,T) is the real temperature 

distribution of the object at time t = T. 

As calculated in [3], [4] the integral numerial method is used by applying Simson 

formula to the right-hand side of the objective function (34). The , the thickness 

of the object, is divided into n equal lengths ( n is an even number).  

Similarly, it is applied to the right-hand side of the equation (35). The period of 

time T  is devided into m equal intervals that m is an even number, too. 

Hence, the optimal control problem is here to find w*
j in order to minimize the 

objective function: 
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The constrained conditions of the control function are described as follows: 

                                     1 2w jA A      ( 0,1,..., )j m                                      (38) 

 

The performance index (37) is a quadratic function of the variables wj with 

constraints (38) are linear. This problem can be obtained by using numerical 

method after a finite number of iterations of computation.  

 

5. The simulation results 
 

After building the algorithms and establishing the control programs, we have 

proceeded to run the simulation programs to test calculating programs. 

 

5.1. The simulation for a slab of steel 

 

  The physical parameters of the object 

- The heat transfer coefficient  = 335 (w/m2. 0C) 

- The heat conducting coefficient  = 55.8  (w/m. 0C)  

- The temperature conducting factor a= 1.03*10-5 (m2/s) 

- The thickness of the object  = 0.2 (m) 
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  The parameters of the furnace 

- The time constant  = 1300 (s) 

- The time delay of the furnace  = 140 (s) 

- The static transfer coefficient of the furnace k  = 6 

  The desired temperature distribution q*(x) = 1000 0C 

  The period of heating time T = 7200 (s) 

  Limit the temperature of furnace u(t) ≤ 25000C 

  Limit the temperature of slab surface q(0,t ) ≤ 1200 0C 

With these parameters, the coefficient Bi is calculated as follows: 

                            
. 335.0,2

1,2
55.8

Bi
 


                                                  (39) 

 

Thus, the slab of steel is a thick object because the coefficient Bi is greater 

than 0.5. Having 6 ≤ / <10 

To calculate the optimal heating process, we choose n = 6 and m = 36. After the 

simulation, we have result like in figure 1. 

 

 
 

Figure 1: The optimal heating process for a slab of steel 

 

 

In figure 1, w*(t) is the optimal control signal (optimal power) of the 

furnace; u(t) is the temperature of the furnace; q(x,t) is temperature distribution of 

the slab, including the temperature of the two surfaces and the temperature of the 

inner layers of the slab of steel. 

From the figure 1, we can see that at the time t = T, the temperature distributions of 

the layers in a slab of steel q(x,T) are all approximately equal 10000C. The largest 

error in compasison with the desired temperature is about 0.20C. Therefore, the 

optimal solution has been testified. 
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5.2. The simulation for a slab of Samot 

 

  The physical parameters of the object 

- The heat transfer coefficient  = 60 (w/m2. 0C) 

- The heat conducting coefficient  = 1.995  (w/m. 0C)  

- The temperature conducting factor a  = 4.86*10-7 (m2/s) 

- The thickness of the object  = 0.027 (m) 

  The parameters of the furnace 

- The time constant  = 1200 (s) 

- The time delay of the furnace  = 130 (s) 

- The static transfer coefficient of the furnace k  = 0.277 

   The desired temperature distribution q*(x) = 500 0C 

   The period of heating time T = 5400 (s) 

   Limit the temperature of furnace u(t) ≤ 8000C  

   Limit the temperature of slab surface  q(0,t) ≤ 6000C 

    With these parameters, the coefficient Bi is calculated as follows: 

     
. 60.0,027

0,81
1.995

Bi
 


                                            (40) 

Thus, the slab of Samot is also a thick object because the coefficient Bi is greater 

than 0.5. Having 6 ≤ / < 10.  

To calculate the optimal heating process, we choose n = 6 and m = 36, too. After 

the simulation, we have results like in figure 2. 

 
Figure 2: The optimal heating process for a slab of Samot 

 

From the figure 2, we can see that at the time t = T, the temperature distributions of 

the layers in a slab of Samot q(x,T) are all approximately equal 5000C. The largest 

error in comparison with the desired temperature is about 0.050C. Therefore, the 

optimal solution has been testified. 
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6. Conclusions 
 

The paper has offered an approximation method with higher accuracy to replace a 

delayed object by using first-order Pade approximation model. A relationship 

between the provided power for the furnace w(t) and the temperature distribution 

of the object q(x,t) has been found. Namely, we have solved a system consisting 

of the partial differential equation type Parabolic with boundary condition type-3 

combined with a time-delayed ordinary differential equation. An optimal solution 

for DPSTD has been defined by using a numerical method. Algorithms and 

optimal calculating program have been accuracy. Then, we have proceeded to run 

the simulations on a slab of steel and a slab of Samot in order to test the 

algorithms once again. 
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