Generalized n-Closed Sets and Generalized n-Continuous Functions

C. W. Baker

Department of Mathematics
Indiana University Southeast
New Albany, IN 47150-6405, USA

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

The notion of a generalized n-closed set is introduced and the basic properties of these sets are established. A useful characterization of the generalized n-closed sets and a new property of the n-closure operator are proved. The concept of a generalized n-continuous function along with two related classes functions are developed.

Mathematics Subject Classification: 54C10, 54D10

Keywords: gn-open set, n-open set, gn-continuous function, n-continuous function, n-closure, n-interior.

1 Introduction

The concept of an n-open set was introduced in [1]. In this note we continue this line of investigation by introducing generalized n-closed (briefly, gn-closed) sets. A useful characterization of these sets is proved. Specifically we show that a set A is gn-closed if and only if $n\text{Cl}(A) = A$. In general the gn-closed sets are better behaved and more useful than the n-open sets, although the sets do not necessarily form a minimal structure. Also a useful property of the n-closure operator is established. It is proved that for every subset A of a topological space X $n\text{Cl}(A) = A$ or $n\text{Cl}(A) = X$. The notion of a gn-continuous function is defined and the basic properties of these functions are
developed. Conditions equivalent to gn-continuity are established. Also two classes of related functions, gn-closed functions and gn-irresolute functions, are introduced.

2 Preliminaries

The symbols X and Y represent topological spaces with no separation properties assumed unless explicitly stated. All sets are considered to be subsets of topological spaces. The closure and interior of a set A are signified by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively.

Definition 2.1 Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a minimal structure (briefly an m-structure) on X \cite{2}, if $\emptyset \in m_X$ and $X \in m_X$.

Definition 2.2 A subset A of a space X is said to be n-open \cite{1} if $\text{Int}(A) \neq \text{Cl}(A)$. A subset of X is called n-closed if its complement is n-open.

Theorem 2.3 \cite{1} A subset A of a space X is n-open if and only if A is not clopen.

Corollary 2.4 \cite{1} A subset A of a space X is n-open if and only if $X - A$ is n-open.

Thus the n-open sets coincide with the n-closed sets.

Definition 2.5 Let A be a subset of a space X. The n-interior of A \cite{1} is denoted by $\text{nInt}(A)$ and given by $\text{nInt}(A) = \bigcup\{U \subseteq X : U \subseteq A \text{ and } U \text{ is n-open}\}$. The n-closure of A \cite{1} is denoted by $\text{nCl}(A)$ and given by $\text{nCl}(A) = \bigcap\{F \subseteq X : A \subseteq F \text{ and } F \text{ is n-closed}\}$.

Theorem 2.6 \cite{1} The following statements hold for every set $A \subseteq X$:

(a) $\text{nInt}(X - A) = X - \text{nCl}(A)$.

(b) $\text{nCl}(X - A) = X - \text{nInt}(A)$.

(c) $x \in \text{nCl}(A)$ if and only if $U \cap A \neq \emptyset$ for every n-open set U containing x.

Theorem 2.7 \cite{1} If X is a space, then

(a) $\text{nCl}(X) = X$.

(b) $\text{nInt}(\emptyset) = \emptyset$.
Theorem 2.8 [1] If X is a discrete space, then

(a) $n\text{Int}(A) = \emptyset$ for every set $A \subseteq X$.

(b) $n\text{Cl}(A) = X$ for every set $A \subseteq X$.

Theorem 2.9 [1] If U is an n-open set and $U = A \cup B$, then either A is n-open or B is n-open.

Definition 2.10 A function $f : X \rightarrow Y$ is said to be n-continuous [1] if $f^{-1}(V)$ is n-open in X for every proper nonempty open set $V \subseteq Y$.

See [1] for additional properties and notation concerning n-open sets.

3 Generalized n-Closed Sets

Definition 3.1 A subset A of a space X is said to be generalized n-closed (briefly gn-closed) if whenever $A \subseteq U$ and U is open, then $n\text{Cl}(A) \subseteq U$. A subset of X is called generalized n-open (briefly gn-open) if its complement is gn-closed.

The collection of gn-closed sets may not form a minimal structure since it may not contain \emptyset.

Theorem 3.2 Let A be a subset of a space X. Then A is gn-open if and only if $F \subseteq n\text{Int}(A)$ whenever $F \subseteq A$ and F is closed.

Example 3.3 Let $X = \{a,b,c\}$ have the topology $\tau = \{X, \emptyset, \{a\}, \{b,c\}\}$. The n-closed sets are $\{a\}, \{b\}, \{a,c\}$, and $\{b,c\}$. The gn-closed sets are $\{a\}, \{b\}, \{a,c\}, \{b,c\}, \{c\}, X$, and \emptyset. The set $\{c\}$ is gn-closed but not n-closed and the set $\{a,b\}$ is closed but not gn-closed.

Obviously n-closed sets are gn-closed. Example 3.3 shows that in general the two collections are not equal. Also from Example 3.3 the gn-closed sets and the gn-open sets do not coincide and the gn-closed sets are not in general closed under union. The fact that n-open sets are not closed under either union or intersection is illustrated by Example 3.3.

Example 3.4 Let $X = \{a,b,c\}$ have the topology $\tau = \{X, \emptyset, \{a\}\}$. All sets in X are gn-closed.

Example 3.5 If X is a discrete space, then X is the only gn-closed set.
Example 3.6 Let X denote the real numbers with the usual topology. Since there are no proper nonempty clopen sets, all proper nonempty sets are n-closed and hence all sets are gn-closed.

Theorem 3.7 Let A be a subset of a space X. Then A is gn-closed if and only if $nCl(A) = A$.

Proof. For the sufficiency assume that A is gn-closed. If A is open, then $nCl(A) \subseteq A$ and hence $nCl(A) = A$. If A is not open, then A is not clopen and hence A is n-closed. Thus it follows from the definition of the n-closure operator that $nCl(A) = A$.

The necessity follows immediately from the definition.

Corollary 3.8 Let A be a subset of a space X. Then A is gn-open if and only if $nInt(A) = A$.

Theorem 3.9 The gn-closed sets in a space X are closed under arbitrary intersection.

Proof. Let A_α be a gn-closed set for every $\alpha \in \mathcal{A}$. Then using Theorem 3.7 we obtain $nCl(\cap_{\alpha \in \mathcal{A}}A_\alpha) \subseteq \cap_{\alpha \in \mathcal{A}}nCl(A_\alpha) = \cap_{\alpha \in \mathcal{A}}A_\alpha$ and hence $nCl(\cap_{\alpha \in \mathcal{A}}A_\alpha) = \cap_{\alpha \in \mathcal{A}}A_\alpha$. Thus $\cap_{\alpha \in \mathcal{A}}A_\alpha$ is gn-closed.

Remark 3.10 If X is discrete, then X is the only gn-closed set in X and hence in the above proof $A_\alpha = X$ for every $\alpha \in \mathcal{A}$.

Corollary 3.11 The gn-open sets in a space X are closed under arbitrary union.

Theorem 3.12 Let A be a subset of a space X. Then $nCl(A) = A$ or $nCl(A) = X$.

Proof. If A is n-closed, then by the definition of n-closure $nCl(A) = A$. Assume A is not n-closed. If there is no n-closed set that contains A, then $nCl(A) = X$. Assume F is an n-closed set such that $A \subseteq F$. Then $F = A \cup (F - A)$. Since F is n-closed and A is not n-closed, it follows from Theorem 2.9 that $F - A$ is n-closed. (Recall that a set is n-closed if and only if it is n-open.) Since it’s complement $X - (F - A)$ is also n-closed and $A \subseteq F \cap (X - (F - A))$, it follows from the definition of the n-closure operator that $nCl(A) \subseteq F \cap (X - (F - A))$. Since $F \cap (X - (F - A)) = A$, it follows that $nCl(A) = A$.

Corollary 3.13 Let A be a subset of a space X. Then $nCl(nCl(A)) = nCl(A)$.

Corollary 3.14 Let A be a subset of a space X. Then $n\text{Cl}(A)$ is gn-closed.

Corollary 3.15 If A is a subset of a space X, then A is gn-closed if and only if $A = n\text{Cl}(B)$ for some set $B \subseteq X$.

Corollary 3.16 If A is a proper subset of a space X, then A is gn-closed if and only if $n\text{Cl}(A) \neq X$.

Corollary 3.17 The collection of all gn-closed sets of a space X is the set $\{A \subseteq X : n\text{Cl}(A) \neq X\} \cup \{X\}$.

Corollary 3.18 Let A be a subset of a space X. If A is proper, gn-closed, and not n-closed, then A is the intersection of two n-closed sets.

4 Generalized n-Continuous Functions

Definition 4.1 A function $f : X \to Y$ is said to be generalized n-continuous (briefly gn-continuous) if $f^{-1}(F)$ is gn-closed in X for every closed set $F \subseteq Y$.

Remark 4.2 If X is a discrete space, then for every space Y there is no gn-continuous function $f : X \to Y$. Note that $f^{-1}(\emptyset) = \emptyset$, which is not gn-closed in X.

Theorem 4.3 The following conditions are equivalent for a function $f : X \to Y$:

(a) f is gn-continuous.

(b) $f^{-1}(V)$ is gn-open for every open set $V \subseteq Y$.

(c) $f^{-1}(\text{Int}(B)) \subseteq n\text{Int}(f^{-1}(B))$ for every set $B \subseteq Y$.

(d) $n\text{Cl}(f^{-1}(B)) \subseteq f^{-1}(\text{Cl}(B))$ for every set $B \subseteq Y$.

Proof. (a) \Rightarrow (b) Let $V \subseteq Y$ be open. Then, using (a) and Theorem 3.7, we have $X - f^{-1}(V) = f^{-1}(Y - V) = n\text{Cl}(f^{-1}(Y - V)) = n\text{Cl}(X - f^{-1}(V)) = X - n\text{Int}(f^{-1}(V))$. Thus $f^{-1}(V) = n\text{Int}(f^{-1}(V))$ and by Corollary 3.8 $f^{-1}(V)$ is gn-open.

(b) \Rightarrow (c) Let $B \subseteq Y$. By (b) $f^{-1}(\text{Int}(B))$ is gn-open. Hence by Corollary 3.8 $f^{-1}(\text{Int}(B)) = n\text{Int}(f^{-1}(\text{Int}(B))) \subseteq n\text{Int}(f^{-1}(B))$.

(c) \Rightarrow (d) Let $B \subseteq Y$. Then $X - f^{-1}(\text{Cl}(B)) = f^{-1}(Y - \text{Cl}(B)) = f^{-1}(\text{Int}(Y - B)) \subseteq n\text{Int}(f^{-1}(Y - B)) = n\text{Int}(X - f^{-1}(B)) = X - n\text{Cl}(f^{-1}(B))$.

Therefore \(\text{nCl}(f^{-1}(B)) \subseteq f^{-1}(\text{Cl}(B)) \).

\((d) \Rightarrow (a) \) Let \(F \subseteq Y \) be closed. It follows from \((d) \) that \(\text{nCl}(f^{-1}(F)) \subseteq f^{-1}(\text{Cl}(F)) = f^{-1}(F) \). By Theorem 3.7 \(f^{-1}(F) \) is gn-closed and hence \(f \) is gn-continuous.

Theorem 4.4 Assume \(X \) is not discrete. If \(f : X \to Y \) is \(n \)-continuous, then \(f \) is gn-continuous.

Remark 4.5 If \(X \) is discrete and \(Y \) is indiscrete, then every function \(f : X \to Y \) is \(n \)-continuous but not gn-continuous.

Example 4.6 Let \(X = \{a, b, c\} \) have the topologies \(\tau = \{X, \emptyset, \{a, b\}, \{c\}\} \) and \(\sigma = \{X, \emptyset, \{a, b\}\} \). The identity function \(f : (X, \tau) \to (X, \sigma) \) is gn-continuous but not \(n \)-continuous. Note that \(f^{-1}(\{c\}) \) is gn-closed but not \(n \)-closed.

Definition 4.7 A function \(f : X \to Y \) is said to be generalized \(n \)-closed (briefly gn-closed) if \(f(F) \) is gn-closed in \(Y \) for every gn-closed set \(F \subseteq X \).

Theorem 4.8 The following conditions are equivalent for a function \(f : X \to Y \):

(a) \(f \) is gn-closed.

(b) \(f(n\text{Cl}(A)) \) is gn-closed for every set \(A \subseteq X \).

(c) \(n\text{Cl}(f(A)) \subseteq f(n\text{Cl}(A)) \) for every set \(A \subseteq X \).

Proof. (a) \(\Rightarrow \) (b) By Corollary 3.14 \(n\text{Cl}(A) \) gn-closed for every set \(A \subseteq X \).

(b) \(\Rightarrow \) (c) Let \(A \subseteq X \). Then \(n\text{Cl}(f(A)) \subseteq n\text{Cl}(f(n\text{Cl}(A))) = f(n\text{Cl}(A)) \).

(c) \(\Rightarrow \) (a) \(A \subseteq X \) be gn-closed. Then using (c) we obtain \(n\text{Cl}(f(A)) \subseteq f(n\text{Cl}(A)) = f(A) \). Therefore \(f(A) = n\text{Cl}(f(A)) \) and hence \(f(A) \) is gn-closed and \(f \) is gn-closed.

Definition 4.9 A function \(f : X \to Y \) is said to be generalized \(n \)-irresolute (briefly gn-irresolute) if \(f^{-1}(F) \) is gn-closed in \(X \) for every gn-closed set \(F \subseteq Y \).

The proof of the following theorem is analogous to that of Theorem 4.8.

Theorem 4.10 The following conditions are equivalent for a function \(f : X \to Y \):

(a) \(f \) is gn-irresolute.

(b) \(f^{-1}(n\text{Cl}(A)) \) is gn-closed for every set \(A \subseteq Y \).

(c) \(n\text{Cl}(f^{-1}(A)) \subseteq f^{-1}(n\text{Cl}(A)) \) for every set \(A \subseteq Y \).
References

Received: September 21, 2021; Published: October 9, 2021