The \(k \)-th Largest Numbers of Maximum Independent Sets in Quasi-Forest Graphs

Jenq-Jong Lin\(^a\), Min-Jen Jou\(^{a,*}\) and Qian-Yu Lin\(^b\)

\(^a\) Ling Tung University, Taichung 40852, Taiwan
\(^*\) Corresponding author

\(^b\) National Chiayi University, Chiayi 60004, Taiwan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2019 Hikari Ltd.

Abstract

Let \(G = (V, E) \) be a simple undirected graph. A subset \(I \) of the vertex set \(V(G) \) is independent if there is no edge of \(G \) between any two vertices of \(I \). A maximum independent set is an independent set of maximum size. A graph \(G \) with vertex set \(V(G) \) is called a quasi-forest graph, if there exists a vertex \(x \in V(G) \) such that \(G - x \) is a forest. In this paper we complete the determination of the \(k \)-th (\(3 \leq k \leq \lfloor n/2 \rfloor \)) largest numbers of maximum independent sets among all quasi-forest graphs of order \(n \geq 6 \) and characterize the extremal graphs.

Mathematics Subject Classification: 05C51

Keywords: maximum independent set, tree, quasi-tree graph, forest, quasi-forest graph, extremal graph

1 Introduction

Let \(G = (V, E) \) be a simple undirected graph. The vertex set of a graph \(G \) is referred to as \(V(G) \), its edge set as \(E(G) \). A subset \(I \subseteq V(G) \) is an independent set of \(G \) if no two vertices of \(I \) are adjacent in \(G \). An independent set \(I' \) of \(G \) is called maximum if \(G \) has no independent set \(I \) with \(|I'| < |I| \). The set of all maximum independent sets of a graph \(G \) is denoted by \(\text{XI}(G) \) and its cardinality by \(\text{xi}(G) \).
For notation and terminology in graphs we follow [1] in general. A graph is connected when there is a path between every pair of vertices. A triangle-free graph is a graph in which no three vertices form a triangle of edges. An acyclic graph, one not containing any cycles, is called a forest. A connected forest is called a tree. The problem of determining the largest number of maximum independent sets of a graph was studied for various classes of graphs, including general graphs, trees, forests, graphs with at most one cycle, graphs with at most \(r \) cycle, connected graphs and triangle-free graphs, see [3, 7]. Lin [5] investigated the second largest and the third largest cardinality of \(xi(G) \) among all trees and forests. Recently, Lin and Jou [6] investigated the \(k \)-th largest cardinality of \(xi(G) \) among all forests of order \(n \).

A connected graph (respectively, graph) \(G \) with vertex set \(V(G) \) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex \(x \in V(G) \) such that \(G - x \) is a tree (respectively, forest). The problem of determining the largest and the second largest numbers of maximum independent sets among all quasi-tree graphs and quasi-forest graphs was solved by Lin [4].

The purpose of this paper is to determine the \(k \)-th \((3 \leq k \leq \lfloor n/2 \rfloor)\) largest numbers of maximum independent sets among all quasi-forest graphs of order \(n \geq 6 \). Extremal graphs achieving these values are also given.

2 Preliminary

In this section, we describe some notations and preliminary results. For a graph \(G = (V, E) \), the cardinality of \(V(G) \) is called the order, and it is denoted by \(|G| \). A maximal connected subgraph of \(G \) is called a component of \(G \). A component of odd (respectively, even) order is called an odd (respectively, even) component. For a set \(A \subseteq V(G) \), the deletion of \(A \) from \(G \) is the graph \(G - A \) obtained from \(G \) by removing all vertices in \(A \) and their incident edges.

Two graphs \(G_1 \) and \(G_2 \) are disjoint if \(V(G_1) \cap V(G_2) = \emptyset \). The union of two disjoint graphs \(G_1 \) and \(G_2 \) is the graph \(G_1 \cup G_2 \) with vertex set \(V(G_1 \cup G_2) = V(G_1) \cup V(G_2) \) and edge set \(E(G_1 \cup G_2) = E(G_1) \cup E(G_2) \). Let \(nG \) be the short notation for the union of \(n \) copies of disjoint graphs isomorphic to \(G \).

Denote by \(P_n \) a path with \(n \) vertices and \(C_n \) a cycle with \(n \) vertices. Throughout this paper, for simplicity, let \(r = \sqrt{2} \).

Lemma 2.1. ([2], [3]) If \(G \) is the union of two disjoint graphs \(G_1 \) and \(G_2 \), then \(xi(G) = xi(G_1) \cdot xi(G_2) \).

The result of the largest number of maximum independent sets among all trees is described in Theorem 2.2.
Theorem 2.2. ([2], [3]) If T is a tree of order $n \geq 2$, then

$$x_i(T) \leq t_1(n) = \begin{cases} r^{n-2} + 1, & \text{if } n \text{ is even,} \\ r^{n-3}, & \text{if } n \text{ is odd.} \end{cases}$$

Furthermore, $x_i(T) = t_1(n)$ if and only if $T = T_1(n)$, where

$$T_1(n) = \begin{cases} T_{1e}(n), & \text{if } n \text{ is even,} \\ T_{1o}(n), & \text{if } n \text{ is odd.} \end{cases}$$

The graphs $T_{1e}(n)$ and $T_{1o}(n)$ are shown in Figure 1.

![Figure 1: The graphs $T_{1e}(n)$ and $T_{1o}(n)$](image)

Define the graph $F_i(n)$ of order $n \geq 2$, $i = 1, 2, \ldots, \lfloor n/2 \rfloor$ as follows.

$$F_i(n) = \begin{cases} T_{1e}(2i) \cup \frac{n-2i}{2} P_2, & \text{if } n \text{ is even,} \\ T_{1e}(2i) \cup P_1 \cup \frac{n-2i-1}{2} P_2, & \text{if } n \text{ is odd.} \end{cases}$$

Let $f_i(n) = x_i(F_i(n))$. For simple calculation, we have that

$$f_i(n) = \begin{cases} r^{n-2} + r^{n-2i}, & \text{if } n \text{ is even,} \\ r^{n-3} + r^{n-2i-1}, & \text{if } n \text{ is odd.} \end{cases}$$

The result of the k-th $(1 \leq k \leq \lfloor n/2 \rfloor)$ largest numbers of maximum independent sets among all forests is described in Theorem 2.3.

Theorem 2.3. ([2], [3], [6]) For integers k, $n \geq 2$ and $1 \leq k \leq \lfloor n/2 \rfloor$. If F is a forest of order n having $F \neq F_i(n)$, for $i = 1, 2, \ldots, k-1$, then $x_i(F) \leq f_k(n)$. Furthermore, $x_i(F) = f_k(n)$ if and only if $F = F_k(n)$ or $2T_{1e}(4) \cup F_1(n-8)$ with $k = 4$.

The result of the largest number of maximum independent sets among all quasi-tree graphs is described in Theorem 2.4.

Theorem 2.4. ([4]) If Q is a quasi-tree graph of order $n \geq 2$, then

$$x_i(Q) \leq q_t(n) = \begin{cases} r^{n-2} + 1, & \text{if } n \text{ is even,} \\ r^{n-1} + 1, & \text{if } n \text{ is odd.} \end{cases}$$
Furthermore, $xi(Q) = qt_1(n)$ if and only if $Q = QT_1(n)$, where

$$QT_1(n) = \begin{cases} T_{1e}(n), & \text{if } n \text{ is even}, \\ QT_{1o}(n) \text{ or } C_5, & \text{if } n \text{ is odd}. \end{cases}$$

The graph $QT_{1o}(n)$ is shown in Figure 2.

The result of the second largest number of maximum independent sets among all quasi-tree graphs of even order is described in Theorem 2.5.

Theorem 2.5. ([4]) If Q is a quasi-tree graph of even order $n \geq 6$ having $Q \neq QT_1(n)$, then $xi(Q) \leq r^{n-2}$ with the equality holding if and only if $Q = QT_{2e}(n)$ or T_8 or P_6, where $QT_{2e}(n)$, T_8 and P_6 are shown in Figure 3.

![Figure 2: The graph $QT_{1o}(n)$](image1)

The results of the largest and the second largest numbers of maximum independent sets among all quasi-forest graphs are described in Theorems 2.6 and 2.7, respectively.

Theorem 2.6. ([4]) If Q is a quasi-forest graph of order $n \geq 2$, then

$$xi(Q) \leq qf_1(n) = \begin{cases} r^n, & \text{if } n \text{ is even}, \\ 3r^{n-3}, & \text{if } n \text{ is odd}. \end{cases}$$

Furthermore, $xi(Q) = qf_1(n)$ if and only if $Q = QF_1(n)$, where

$$QF_1(n) = \begin{cases} F_1(n), & \text{if } n \text{ is even}, \\ C_3 \cup F_1(n-3), & \text{if } n \text{ is odd}. \end{cases}$$

![Figure 3: The graphs $QT_{2e}(n)$, T_8 and P_6](image2)
Theorem 2.7. ([4]) If Q is a quasi-forest of order $n \geq 4$ having $Q \neq QF_1(n)$, then
\[
xi(Q) \leq qf_2(n) = \begin{cases}
3r^{n-4}, & \text{if } n \text{ is even,} \\
5r^{n-5}, & \text{if } n \text{ is odd.}
\end{cases}
\]
Furthermore, $xi(Q) = qf_2(n)$ if and only if $Q = QF_2(n)$, where
\[
QF_2(n) = \begin{cases}
F_2(n) \text{ or } C_3 \cup F_1(n-3), & \text{if } n \text{ is even}, \\
QT_{1o}(5) \cup F_1(n-5) \text{ or } C_5 \cup F_1(n-5), & \text{if } n \text{ is odd.}
\end{cases}
\]

3 Main results

In this section, we determine the k-th ($3 \leq k \leq \lfloor n/2 \rfloor$) largest values of $xi(G)$ among all quasi-forest graphs of order $n \geq 6$. Moreover, the extremal graphs achieving these values are also determined.

Define the graphs $QF_i(n)$ of order $n \geq 6$, $i = 3, 4, \ldots, \lfloor n/2 \rfloor$ as follows.
\[
QF_i(n) = \begin{cases}
QT_{1o}(2i-1) \cup F_1(n-2i+1), & \text{if } n \text{ is even}, \\
QT_{1o}(2i+1) \cup F_1(n-2i-1), & \text{if } n \text{ is odd.}
\end{cases}
\]
Let $qf_i(n) = xi(QF_i(n))$. For simple calculation, we have that
\[
qf_i(n) = \begin{cases}
r^{n-2} + r^{n-2i}, & \text{if } n \text{ is even,} \\
r^{n-1} + r^{n-2i-1}, & \text{if } n \text{ is odd.}
\end{cases}
\]

Lemma 3.1. If Q is a quasi-forest graph of odd order $n \geq 7$ with $Q \neq QF_i(n)$ for $i = 1, 2, \ldots, k-1$ and $3 \leq k \leq (n-1)/2$, then $xi(Q) \leq qf_k(n)$. Furthermore, the equality holds if and only if $Q = QF_k(n)$ or $C_3 \cup F_2(n-3)$ for $k = 3$.

Proof. Since $f_1(n) < qf_k(n)$ for n is odd, by Theorem 2.3, we assume that Q is not a forest. Then there exists a component H containing at least one cycle, where $|H| = m$. We consider the following two cases.

Case 1: m is even. Since H contains at least one cycle, it follows that $H \neq QT_1(m)$. By Lemma 2.1, Theorems 2.3 and 2.5, we have that
\[
xi(Q) = xi(H \cup (Q - V(H))) = xi(H) \cdot xi(Q - V(H)) \leq r^{m-2} \cdot r^{n-m-1} = r^{n-3} < r^{n-1} + r^{n-2k-1} = qf_k(n).
\]
Case 2: m is odd. Since H contains at least one cycle, it follows that $m \geq 3$. For the case that $Q - V(H) \neq F_1(n-m)$, by Lemma 2.1, Theorems 2.3 and 2.4, we have that

$$xi(Q) = xi(H \cup (Q - V(H)))$$
$$= xi(H) \cdot xi(Q - V(H))$$
$$\leq qt_1(m) \cdot f_2(n-m)$$
$$= (r^{m-1} + 1) \cdot 3^{n-m-4}$$
$$= 3^{n-5} + 3^{n-m-4}$$
$$\leq 3^{n-5} + 3^{n-7}$$
$$= 9^{n-7}$$
$$= qf_3(n).$$

Furthermore, the equalities holding imply that $m = k = 3$, $H = C_3$ and $Q - V(H) = F_2(n-3)$, that is, $Q = C_3 \cup F_2(n-3)$.

On the other hand, we assume that $Q - V(H) = F_1(n - m)$. Since $Q \neq QF_i(n)$ for $i = 1, 2, \ldots, k - 1$, by Lemma 2.1, Theorems 2.3 and 2.4, we have that

$$xi(Q) = xi(H \cup (Q - V(H)))$$
$$= xi(H) \cdot xi(Q - (V(H)))$$
$$\leq \left\{ \begin{array}{ll}
(qt_1(m) - 1) \cdot f_1(n - m), & \text{if } m \leq 2k - 1, \\
qt_1(m) \cdot f_1(n - m), & \text{if } m \geq 2k + 1,
\end{array} \right.$$
$$= \left\{ \begin{array}{ll}
r^{m-1} \cdot r^{n-m}, & \text{if } m \leq 2k - 1, \\
(r^{m-1} + 1) \cdot r^{n-m}, & \text{if } m \geq 2k + 1,
\end{array} \right.$$
$$= \left\{ \begin{array}{ll}
r^{n-1}, & \text{if } m \leq 2k - 1, \\
r^{n-1} + r^{n-2k-1}, & \text{if } m \geq 2k + 1,
\end{array} \right.$$
$$\leq r^{n-1} + r^{n-2k-1}$$
$$= qf_k(n).$$

Furthermore, the equalities holding imply that $m = 2k + 1$, $H = QT_{1o}(2k + 1)$ and $Q - V(H) = F_1(n - 2k - 1)$. In conclusion, $Q = QF_k(n) = QT_{1o}(2k + 1) \cup F_1(n - 2k - 1).$ \hfill \Box

Lemma 3.2. If Q is a quasi-forest graph of even order $n \geq 6$ with $Q \neq QF_i(n)$ for $i = 1, 2, \ldots, k - 1$ and $3 \leq k \leq n/2$, then $xi(Q) \leq qf_k(n)$. Furthermore, the equality holds if and only if $Q = F_k(n)$ or $QF_k(n)$ or $C_5 \cup F_1(n - 5)$ for $k = 3$ or $2T_{1e}(4) \cup F_1(n - 8)$, $C_3 \cup F_2(n - 3)$ for $k = 4$.

Proof. Since $f_k(n) = qf_k(n)$ for n is even, by Theorem 2.3, we assume that Q is not a forest. We consider the following two cases.
The k-th largest numbers of maximum independent sets

Case 1: All components of Q are even. Let H' be an even component containing at least one cycle, where $|H'| = m'$. Note that $H' \neq QT_1(m')$. By Lemma 2.1, Theorems 2.3 and 2.5, we have that

\[xi(Q) = xi(H' \cup (Q - V(H'))) \]
\[= xi(H') \cdot xi(Q - V(H')) \]
\[\leq r^{m'-2} \cdot r^{n-m'} \]
\[= r^{n-2} \]
\[< r^{n-2} + r^{n-2k} \]
\[= qf_k(n). \]

Case 2: There is an odd component H'' of Q, where H'' is a tree of order m''. Suppose that $m'' \geq 3$, by Lemma 2.1, Theorems 2.2 and 2.6, then

\[xi(Q) = xi(H'' \cup (Q - V(H''))) \]
\[= xi(H'') \cdot xi(Q - (V(H''))) \]
\[\leq r^{m''-3} \cdot 3r^{n-m''-3} \]
\[= 3r^{n-6} \]
\[< qf_k(n). \]

For the case that $m'' = 1$, by Theorem 2.7 and Lemma 3.1, we have that $Q - V(H) = QT_{1,o}(2k-1) \cup F_1(n-2k)$ or $C_5 \cup F_1(n-6)$ for $k = 3$ or $C_3 \cup F_2(n-4)$ for $k = 4$. In conclusion, $Q = QF_k(n) = QT_{1,o}(2k-1) \cup F_1(n-2k+1)$ or $C_5 \cup F_1(n-5)$ for $k = 3$ or $C_3 \cup F_2(n-3)$ for $k = 4$. \qed

The result for the k-th ($3 \leq k \leq \lfloor n/2 \rfloor$) largest numbers of maximal independent sets among all quasi-forest graphs, now follow from Lemmas 3.1 and 3.2, and it is summarized in the following theorem.

Theorem 3.3. For integers k, $n \geq 6$ and $3 \leq k \leq \lfloor n/2 \rfloor$. If Q is a quasi-forest graph of order n with $Q \neq QF_i(n)$, for $i = 1, 2, \ldots, k-1$, then $xi(Q) \leq qf_k(n)$. Furthermore, the equality holds if and only if

1. $Q = QF_k(n)$,
2. $Q = C_3 \cup F_2(n-3)$ for n is odd and $k = 3$,
3. $Q = F_k(n)$ for n is even,
4. $Q = C_5 \cup F_1(n-5)$ for n is even and $k = 3$,
5. $Q = 2T_{1,e}(4) \cup F_1(n-8)$ for n is even and $k = 4$,
6. $Q = C_3 \cup F_2(n-3)$ for n is even and $k = 4$.

References

Received: November 5, 2019; Published: December 5, 2019