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Abstract

A weak form of contra θ-c-continuity, called almost contra θ-c-continuity
is introduced. Also a local form of almost contra θ-c-continuity is inves-
tigated. The basic properties of both of these classes of functions are
developed and an application to H-closed spaces and Katětov spaces is
investigated.
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1 Introduction

Contra-continuity was introduced by Dontchev [6] in 1996. Since then many
variations of contra continuity have been studied. Recently several different
forms of almost contra continuity have been investigated. Ekici [9, 10] devel-
oped the notions of an almost contra-super-continuous function and an almost
contra precontinuous function. Recently Caldas, et al. [4] have studied al-
most contra βθ-continuity [4]. The purpose of this note is to introduce the
concept of almost contra θ-c-continuity, which is a weak form of contra θ-c-
continuity, introduced by Baker [3]. The class of almost contra θ-c-continuous
functions fills gaps between several classes of functions and the class of almost
contra-super-continuous functions. Finally we develop a local version of almost
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contra θ-c-continuity, which we call almost local contra θ-c-continuity. This is
a weak form of local contra θ-c-continuity, introduced by Baker [3]. The basic
properties of both of these classes of functions are developed. For example,
conditions are established under which the range of an almost locally contra
θ-c-continuous function is nearly compact. An application of almost locally
contra θ-c-continuity to H-closed spaces and Katětov spaces is investigated.

2 Preliminaries

The symbols X and Y represent topological spaces with no separation prop-
erties assumed unless explicitly stated. All sets are considered to be subsets
of topological spaces. The closure and interior of a subset A of a space X are
signified by Cl(A) and Int(A), respectively. A set A is said to be regular open
provided that A = Int(Cl(A)) and regular closed provided that A = Cl(Int(A))
or equivalently its complement is regular open. The θ-closure of a set A, de-
noted by Clθ(A), is the set of all x ∈ X such that every closed neighborhood
of x intersects A nontrivially. A set A is said to be θ-closed [13] if Clθ(A) = A.
A set A is θ-open if its complement is θ-closed or equivalently if A contains a
closed neighborhood of each of its points. A set A is called δ-open [13] if A
contains a regular open neighborhood of each of its points and δ-closed if its
complement is δ-open. A subset A of a space X is θ-c-open [2] if there exists a
set B such that A = X − Clθ(B) and θ-c-closed if its complement is θ-c-open
or equivalently if there exists a set B such that A = Clθ(B).

Definition 2.1 A function f : X → Y is said to be contra θ-c-continuous
[3] if f−1(V ) is θ-c-closed for every open set V of Y .

Definition 2.2 A function f : X → Y is said to be almost contra super-
continuous [9] (respectively, almost contra θ-continuous) if f−1(V ) is δ-closed
(respectively, θ-closed) for every regular open set V of Y .

Definition 2.3 A function f : X → Y is said to be RC-continuous [7] if
f−1(V ) is regular closed for every open set V of Y .

Definition 2.4 A function f : X → Y is said to be an R-map [5] (re-
spectively, a contra R-map [8]) if f−1(V ) is regular open (respectively, regular
closed) for every regular open set V of Y .

Definition 2.5 A space X is said to be H-closed [11] if X is a closed subset
in every space containing X as a subspace.

Definition 2.6 A space X is said to be Katětov [11] if it has a coarser
minimal H-closed topology or equivalently a coarser H-closed topology.



Almost contra θ-c-continuous Functions 43

3 Almost contra θ-c-continuous functions

Definition 3.1 A function f : X → Y is said to be almost contra θ-c-
continuous if f−1(V ) is θ-c-closed for every regular open subset V of Y .

Obviously contra θ-c-continuity implies almost contra θ-c-continuity. Since
regular closed implies θ-c-closed [2], contra R-map implies almost contra θ-
c-continuity. Since θ-c-open implies δ-open [2], almost contra θ-c-continuity
implies almost contra-super-continuity. Since θ-open implies θ-c-open [2], al-
most contra θ-continuity implies almost contra θ-c-continuity.

Thus we have the following diagram of implications.

contra R-map
⇓

almost contra θ-cont. ⇒ almost contra-θ-c-cont. ⇒ almost contra-super-cont.
⇑

contra θ-c-cont.

The following examples show that none of these implications are reversible.

Example 3.2 Let X = {a, b, c} have the topology τ = {X, ∅, {a} {b}, {a, b}}
and let f : (X, τ)→ (Y, τ) be given by f(a) = a, f(b) = c, and f(c) = a. Then
f is almost contra θ-c-continuous, but, since f−1({a}) is not θ-closed, f is not
almost contra θ-continuous.

Example 3.3 Let X = {a, b, c} have the topology τ = {X, ∅, {a}, {a, b}}
and let f : (X, τ) → (Y, τ) be the identity map. Then f is obviously almost
contra-super-continuous, but, since f−1({a}) is not θ-c-closed, f is not almost
contra θ-c-continuous.

Example 3.4 Let X = {a, b, c} have the topology τ = {X, ∅, {a} {b}, {a, b}}
and let f : (X, τ)→ (Y, τ) be given by f(a) = c, f(b) = c, and f(c) = a. Then
f is almost contra-super-continuous, but, since f−1({a}) is not θ-c-closed, f
is not almost contra θ-c-continuous.

Example 3.5 Let X denote the real numbers, let τ be the usual topology
on X, and let σ = {U ⊆ X : 1 6∈ U or U = X}. Let f : (X, τ) → (X, σ)
be given by f(x) = 2 if x ≤ 0 or x = 1 and f(x) = 1 if 0 < x < 1 or x > 1.
Then f is almost contra θ-c-continuous, but not a contra R-map.

The next two results are consequences of the definition of a θ-c-closed set.

Theorem 3.6 If f : X → Y is almost contra θ-c-continuous and Clθ(A) is
regular-closed for every set A in X, then f is a contra-R-map.
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Theorem 3.7 If f : X → Y is almost contra θ-c-continuous and Clθ(A) is
θ-closed for every set A in X, then f is almost contra θ-continuous.

Definition 3.8 A function f : X → Y is said to be quasi θ-c-continuous
[3] if f−1(V ) is θ-c-open for every θ-c-open subset V of Y .

Theorem 3.9 Let f : X → Y and g : Y → Z be functions.

(a) If f is quasi-θ-c-continuous and g is almost contra θ-c-continuous, then
g ◦ f is almost contra θ-c-continuous.

(b) If f is almost contra θ-c-continuous and g is an R-map, then g ◦ f is
almost contra θ-c-continuous.

Definition 3.10 A function f : X → Y is said to be quasi θ-c-closed if
f(F ) is θ-c-closed for θ-c-closed set F in X.

Theorem 3.11 Let f : X → Y and g : Y → Z be functions. If g ◦ f is
almost contra θ-c-continuous and f is surjective and quasi θ-c-closed, then g
is almost contra θ-c-continuous..

Proof. Let V be a regular open set in Z. Then f−1(g−1(V )) is θ-c-
closed in X. Thus f(f−1(g−1(V ))) is θ-c-closed in Y . Since f is surjective,
f(f−1(g−1(V ))) = g−1(V ). Hence g−1(V ) is θ-c-closed in Y , which proves that
g is almost contra θ-c-continuous.

Definition 3.12 A function f : X → Y is said to be quasi regular-open if
f(V ) is regular open for every regular open set V in X.

Theorem 3.13 Let f : X → Y and g : Y → Z be functions. If g ◦ f is
almost contra θ-c-continuous and g is injective and quasi regular open, then f
is almost contra θ-c-continuous..

Proof Let V be a regular open set in Y . Since g is quasi regular open,
g(V ) is regular open in Z. Then, since g ◦ f is almost contra θ-c-continuous
f−1(V ) = f−1(g−1(g(V ))) is θ-c-closed in X. Thus f is almost contra θ-c-
continuous.

4 Almost locally contra θ-c-continuous func-

tions

Definition 4.1 A function f : X → Y is said to be almost locally contra θ-
c-continuous (respectively, locally contra θ-c-continuous [3]) if for every x ∈ X
and every regular open (respectively, open) set V in Y containing f(x), there
exists a θ-c-closed set F in X such that x ∈ F and f(F ) ⊆ V .
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It follows from the definitions that almost locally contra θ-c-continuity is
implied by both almost contra θ-c-continuity and locally contra θ-c-continuity.
The following examples show that these implications are not reversible,

Example 4.2 Let X denote the real numbers with the usual topology. The
identity mapping f : X → X is almost locally contra θ-c-continuous, since for
any nonempty set V , f−1(V ) is a union of singleton sets and hence a union of
θ-c-closed sets. However, f is not almost contra θ-c-continuous, because (0, 1)
is regular open, but not θ-c-closed.

The function in Example 3.3 is almost locally contra θ-c-continuous, but not
locally contra θ-c-continuous. Incidentally, as the next example shows, almost
locally contra θ-c-continuity does not imply almost contra-super-continuity.

Example 4.3 Let X denote the real number and let σ be the usual topology
on X and let τ be the discrete topology on X. The identity mapping f :
(X, σ)→ (X, τ) is almost locally contra θ-c-continuous but not almost contra-
super-continuous. Note that any singleton set is regular closed in (X, τ) but
not δ-open in (X, σ).

Definition 4.4 A space X is said to be rT1 [1] if for every pair of distinct
points x and y of X there exists δ-open sets U and V containing x and y,
respectively, such that y 6∈ U and x 6∈ V .

Theorem 4.5 If f : X → Y is an almost locally contra θ-c-continuous
injection and Y is Urysohn, then X is rT1.

Proof. Let x and y be distinct points in X. Since Y is Urysohn, there
exist open sets V and W containing f(x) and f(y), respectively, such that
Cl(V )∩Cl(W ) = ∅. Since Cl(V ) and Cl(W ) are regular closed, f−1(Cl(V )) and
f−1(Cl(W )) are intersections of θ-c-open sets. Thus there exist {Aα : α ∈ A}
and {Bβ : β ∈ B} such that Aα is θ-c-open for every α ∈ A and Bβ is θ-c-
open for every β ∈ B and f−1(Cl(V )) = ∩α∈AAα and f−1(Cl(W )) = ∩β∈BBβ.
Since f−1(Cl(V ))∩ f−1(Cl(W )) = ∅, there exists α ∈ A such that x ∈ Aα and
y 6∈ Aα and there exists β ∈ B such that y ∈ Bβ and x 6∈ Bβ. Since θ-c-open
implies δ-open, Aα and Bβ are δ-open. Thus X is rT1.

Definition 4.6 A space X is said to be strongly θ-c-closed [3] if every cover
of X by θ-c-closed sets has a finite subcover.

Definition 4.7 A space X is said to be nearly compact [12] if every cover
of X by regular open sets has a finite subcover.

Theorem 4.8 If f : X → Y is almost locally contra θ-c-continuous and
surjective and X is strongly θ-c-closed, then Y is nearly compact.
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Proof. Let C be a cover of Y by regular open sets. Let x ∈ X and let Vx ∈ C
such that f(x) ∈ Vx. Then, since f is almost locally contra θ-c-continuous,
there exists a θ-c-closed set Fx such that x ∈ Fx ⊆ f−1(Vx). Then, since
{Fx : x ∈ X} is a cover of X by θ-c-closed sets, there exists a finite subcover
{Fxi : i = 1, . . . , n}. It then follows that {Vxi : i = 1, . . . , n} is a finite subcover
of C, which proves that Y is nearly compact.

Recall that the graph of a function f : X → Y is given by G(f) =
{(x, f(x)) : x ∈ X}.

Definition 4.9 The graph of a function f : X → Y is said to be almost
contra θ-c-closed if for every (x, y) ∈ X×Y −G(f), there exist a θ-c-closed set
F in X and a regular open set V in Y such that (x, y) ∈ F×V ⊆ X×Y −G(f).

Theorem 4.10 If f : X → Y is almost locally contra θ-c-continuous and
Y is Hausdorff, then G(f) is almost contra θ-c-closed.

Proof Let (x, y) ∈ X × Y − G(f). Then, since y 6= f(x), there exist
disjoint open sets V and W such that f(x) ∈ V and y ∈ W . Since Y −Cl(W )
is regular open and f is almost locally contra θ-c-continuous, there exists a
θ-c-closed set F such that x ∈ F ⊆ f−1(Y − Cl(W )). Then we see that
(x, y) ∈ F × Int(Cl(W )) ⊆ X × Y − G(f), which proves that G(f) is almost
contra θ-c-closed.

Lemma 4.11 The graph of a function f : X → Y is almost contra θ-c-
closed if and only if for every (x, y) ∈ X×Y −G(f) there exists a θ-c-closed set
F containing x and a regular open set V containing y such that f(F )∩V = ∅.

Theorem 4.12 If f : X → Y has an almost contra-θ-closed graph, then
for every x ∈ X, {f(x)} = ∩{Cl(f(F )) : F is θ-c-closed and x ∈ F}.

Proof Assume the statement is false. Then for some x ∈ X there exists
y ∈ Y such that y 6= f(x) and y ∈ Cl(f(F )) for every θ-c-closed set F
containing x. So for every open set V in Y containing y and every θ-c-closed
set F containing x, V ∩ f(F ) 6= ∅. This contradicts the fact that G(f) is
almost contra θ-c-closed.

Corollary 4.13 If f : X → Y has an almost contra-θ-closed graph, then
{f(x)} is closed for every x in X.

Theorem 4.14 If f, g : X → Y are almost locally contra θ-c-continuous
and Y is Hausdorff, then the set A = {x : f(x) 6= g(x)} is the union of
intersections of pairs of θ-c-closed sets.
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Proof. Let x ∈ A. Since Y is Hausdorff, there exist disjoint open sets
V and W containing f(x) and g(x), respectively. Then f(x) ∈ Int(Cl(V ))
and g(x) ∈ Int(Cl(W )) and Int(Cl(V )) ∩ Int(Cl(W )) = ∅. Since f and g
are almost locally contra θ-c-continuous, there exist θ-c-closed sets F and G
such that x ∈ F ⊆ f−1(Int(Cl(V ))) and x ∈ G ⊆ g−1(Int(Cl(W ))). Then
x ∈ F ∩ G ⊆ A, which proves that A is the union of intersections of pairs of
θ-c-closed sets.

Theorem 4.15 [11] If X is an H-closed space and A ⊆ X, then Clθ(A) is
Katětov.

It is an immediate consequence of Theorem 4.15 that every θ-c-closed subset
of an H-closed space is Katětov. Thus the following result is a consequence of
the definition of almost local contra θ-c-continuity.

Theorem 4.16 If f : X → Y is almost locally contra θ-c-continuous and
X is H-closed, then for every regular open set V in Y , f−1(V ) is a union of
Katětov spaces.

References

[1] S. P. Arya and T. Nour, Separation axioms for bitopological spaces, Indian
J. Pure Appl. Math., 19 (1988), 42-50.

[2] C. W. Baker, On θ-c-open sets, Internat. J. Math. Math. Sci., 15 (1992),
255-260.

[3] C. W. Baker, Contra θ-c-continuous functions, Int. J. Contemp. Math.
Sci., 12 (2017), 43-50. https://doi.org/10.12988/ijcms.2017.714

[4] M. Caldas. M. Ganster, S. Jafari, T. Noiri, and V. Popa,Almost contra
βθ-continuity in topological spaces, J. Egyptian Math. Soc., 25 (2017),
158-163. https://doi.org/10.1016/j.joems.2016.08.002

[5] D. Carnahan, Some Properties Related to Compactness in Topological
Spaces, Ph. D. Thesis, Univ. of Arkansas, 1973.

[6] J. Dontchev, Contra-continuous functions and strongly S-closed spaces,
Internat. J. Math. Math. Sci., 19 (1996), 303-310.
https://doi.org/10.1155/s0161171296000427

[7] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math. Panon-
ica, 10 (1999), 159-168.



48 C. W. Baker

[8] E. Ekici, On contra R-map and a weak form, Indian J. Math., 46 (2004),
267-281.

[9] E. Ekici, Almost contra-super-continuous functions, Stud. Cere. St. Ser.
Mat. Univ. Bacău, 14 (2004), 31-42.

[10] E. Ekici, Almost contra-precontinuous functions, Bull. Malaysian Math.
Soc., 27 (2006), 53-65.

[11] J. Porter and M. Tikoo, On Katětov spaces, Canad. Math. Bull., 32
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