On Annihilator Small Intersection Graph

Mehdi Sadiq Abbas and Hiba Ali Salman
Department of Mathematics
College of Science, Al-Mustansiriyah University
Baghdad, Iraq

Copyright © 2017 Mehdi Sadiq Abbas and Hiba Ali Salman. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Consider R as an associative ring with non-zero identity and M be a left R-module. We define the annihilator small intersection graph $G_{a}(M)$ of M with all non annihilator small proper submodules of M as vertices and two distinct vertices N,K are adjacent if $N \cap K$ is non annihilator small submodule of M. In this paper we investigate the effect of the algebraic properties of M on the graph-theoretic properties.

Keywords: a-small intersection graph, Null graph, Empty graph, The Girth of a graph

1. Introduction

Throughout this paper, R will denote an associative ring with identity, and M a left R-module. Remember that, a submodule S of an R-module M is said to be small if for each submodule T of M with $S+T=M$ then $T=M$, and the Jacobson radical of an R-module M denoted by $J(M)$ is defined as the sum of all small submodules of M, or as the intersection of all maximal submodules of M [8]. Also, M is called hollow if every proper submodule of it is small [8]. The authors in [1] introduced and studied a generalization of small submodules, where a submodule N of an R-module M is called annihilator small (briefly a-small) in M (denoted by $N a\ll M$), in case for every submodule L of M, $N+L=M$ implies that $\text{ann}(L)=\text{ann}(M)$. They also defined $J_{a}(M)$ as the sum of all a-small submodules of M. The set of all maximal submodules of an R-module M is denoted by $\text{Max}(M)$. We shall classify $\text{Max}(M)$ in our work into two parts, the first contains the maximal submodules that $J_{a}(M)$ is contained in each one of them (denoted by $\mu(J_{a})$), the second contains the maximal submodules that don’t contain $J_{a}(M)$ in any of them.
A graph G_a is defined as the pair $(V(G_a), E(G_a))$, where $V(G_a)$ is the set of vertices of G_a and $E(G_a)$ is the set of edges of G_a. The following definitions are mentioned in [3] and we will state them with a slight change for the sake of completion of the work. For any two distinct vertices a and b then $a - b$ means that a and b are adjacent. The degree of a vertex a of a graph G_a (denoted by $\text{deg}(a)$) is the number of edges incident on a. If $|V(G_a)| \geq 2$, a path from a to b is a series of adjacent vertices $a - v_1 - v_2 - ... - v_n - b$. The path that starts with a vertex a and ends with it is called a cycle. Note that a graph whose vertices set is empty is called a null graph and a graph whose edge-set is empty is called an empty graph. A graph G_a is called connected if for any vertices a and b of G_a there is a path between a and b, otherwise G_a is called disconnected. The girth of G_a, is the length of the shortest cycle in G_a and it is denoted by $g(G_a)$. If G_a has no cycle, we define the girth of G_a to be infinite. A graph G_a is called complete if every pair of distinct vertices are adjacent.

We have introduced in [1] the concept of a-small submodules and studied some of their properties, as well as their relation with other types of small submodules, where it is clear from the definitions of both small and a-small submodules that every small submodule is a-small, but the converse is not true generally [1] contains examples for that. In 2012, the authors in [2] have established the intersection graph of submodules of a module and studied its properties, their aim was to study the connection between the algebraic properties of a module and the graph theoretic properties associated to it. In 2016, the small intersection graph relative to multiplication modules has been studied by the authors in [3]. This has motivated us to present this work, where we investigate some of the results appeared in [3] with our definition of a-small submodules presented earlier. But our work is not relative to multiplication modules as that in [3]. In this work, we shall study the effect of the algebraic properties of M on the graph theoretic properties of $G_a(M)$.

2. Results of $G_a(M)$

Definition 2.1: let M be an R-module. We define the a-small intersection graph of M denoted by $G_a(M)$ with all proper non a-small submodules as vertices, and two distinct vertices N and K are adjacent if $N \cap K$ is non-a-small in M.

The following two lemmas appears in [1]

Lemma 2.2: Let M be an R-module, with submodules $A \subseteq N$. If $N \ll M$, then $A \ll M$.

Lemma 2.3: Let M be an R-module. Then $J_a(M)$ is a submodule of M that contains every a-small submodule of M.

Recall that a proper submodule N of an R-module M is called prime if $ax \in N$ for $a \in R$ and $x \in M$, then either $aM \subseteq N$ or $x \in N$. In particular, if N is a prime
submodule of M, then $P = [N:M]$ is a prime ideal of R. Moreover, every maximal submodule of M is a prime submodule [7].

We shall consider the following condition.

Condition: If N & K are two a-small submodules of M and P a prime submodule of M with $N \cap K \subseteq P$ then either $N \subseteq P$ or $K \subseteq P$.

It seems important to mention that the above condition is satisfied in multiplication modules [5].

Proposition 2.4: Let M be an R-module, which satisfies condition*, and $\text{Max}(M) = \{M_i\}_{i \in I}$ where $|I| > 1$. If J is a finite subset of I such that $M_j \notin \mu(J_a)$ for each $j \in J$. Then $\cap_{j \in J} M_j$ is non a-small in M.

Proof: Assume that $\cap_{j \in J} M_j$ is a-small in M. Then by lemma (2.3) we get that $\cap_{j \in J} M_j \subseteq J_a(M)$, but $J_a(M) \subseteq \cap \{W | W \in \mu(J_a)\}$, hence $\cap_{j \in J} M_j \subseteq W$, for each W in $\mu(J_a)$. By condition* $M_j \subseteq W$ for some $j \in J$ which contradicts the maximality of M_j. Thus $\cap_{j \in J} M_j$ is non a-small in M. \blacksquare

Corollary 2.5: Let R be a commutative ring and M a multiplication R-module, and $\text{Max}(M) = \{M_i\}_{i \in I}$ where $|I| > 1$. If J is a finite subset of I such that $M_j \notin \mu(J_a)$ for each $j \in J$. Then $\cap_{j \in J} M_j$ is non a-small in M.

Next, we shall state a sufficient condition for $G_a(M)$ being a null graph. But first recall that an R-module M is called local if it has a unique maximal submodule, that is, a proper submodule that contains all proper submodules. In this case $J(M)$ equals that largest submodule and $J(M)$ is small in M [8].

It is well known that the Jacobson radical of an R-module is the sum of all small submodules of M, and characterized also as the intersection of all maximal submodules of M. The following lemma that is mentioned in [1] is in this direction.

Lemma 2.6: Let M be a finitely generated R –module and $J_a(M)$ a\ll M. Then we have the following statements:

1. $J_a(M)$ is the unique largest annihilator small submodule of M.
2. $J_a(M) = \cap \{W | W \in \mu(J_a)\}$

Proposition 2.7: Let M be a finitely generated R-module and $J_a(M)$ a\ll M. If M is local, then $G_a(M)$ is a null graph.

Proof: Let W be the maximal submodule of M. It is clear that $J_a(M) \subseteq W$ and then by lemma (2.6) $J_a(M) = W$. This implies that every proper submodule of M is contained in $J_a(M)$ which is a-small in M by our assumption. Hence, every proper submodule of M is a-small by lemma (2.2), and then $G_a(M)$ is a null graph. \blacksquare
The converse of the above proposition may not be true in general. The following examples discuss the above proposition in more than one situation.

Examples 2.8:

a. In the \mathbb{Z}-module \mathbb{Z} every proper submodule is a-small [1], this implies that $G_a(\mathbb{Z})$ is a null graph. Although, it is well-known that \mathbb{Z} is not a local module.

b. It is well-known that \mathbb{Z}_{p^∞} as \mathbb{Z}-module has no maximal submodules, but $G_a(\mathbb{Z}_{p^\infty})$ is a null graph since every submodule of \mathbb{Z}_{p^∞} is a-small[1].

Our aim is to study non-null graphs, since all definitions for graph theory are for non-null graphs only.

Proposition 2.9: Let M be a finitely generated R-module. If $\text{Max}(M)=\{M_1, M_2\}$ where M_1 and M_2 are both hollow R-modules and belong to $\mu(J_a)$, then $G_a(M)$ is an empty graph.

Proof: Suppose that N is a non a-small submodule of M with $N \neq M_i$ $i = 1,2$. Since M is finitely generated then $N \subseteq M_1$ or $N \subseteq M_2$, now since both M_1 and M_2 are hollow modules, we get that N is small in M, hence $N \ll M$. Thus M_1 and M_2 are the only vertices of $G_a(M)$ which are not adjacent, since $M_1 \cap M_2 \ll M_1$ by M_1 being hollow, hence $M_1 \cap M_2 \ll M$ and this implies that $M_1 \cap M_2 \ll M$. Hence, $G_a(M)$ is an empty graph.

The following example shows that the condition that both M_1 and M_2 are hollow in proposition(2.9)can’t be dropped.

Example 2.10: Let $M=\mathbb{Z}_{18}$ as \mathbb{Z}-module, then $V(G_a(M))=\{2M, 3M, 9M\}$. Although, $\text{Max}(M)=\{2M, 3M\}$ and both contain $J_a(M)$ which is $6M$, but $3M$ is not hollow since $9M$ is not small in $3M$. clearly, $G_a(M)$ is not an empty graph. See figure (2.1).

![Figure (2.1)](image)

Proposition 2.11: Let M be a finitely generated R-module that satisfies condition* and $J_a(M) \ll M$. If $\text{Max}(M)=\{M_1, M_2\}$ where both M_1 & $M_2 \in \mu(J_a)$, then
\(G_a(M) = G_{a1} \cup G_{a2} \) where \(G_{a1} \) and \(G_{a2} \) are two disjoint complete subgraphs of \(G_a(M) \).

Proof: Let \(G_{aj} = \{ L \subseteq M | L \subseteq M_j \ and \ L \) is non a-small in M \} for \(j=1,2 \). Consider \(N, K \in G_{a1} \), we claim that \(N \) and \(K \) are adjacent. Otherwise, if \(N \cap K \ a \ll M \) then \(N \cap K \subseteq J_a(M) = M_1 \cap M_2 \), that is \(N \cap K \subseteq M_1 \) and \(N \cap K \subseteq M_2 \). By the use of condition* we have either \(K \subseteq M_2 \) or \(N \subseteq M_2 \), this implies that either \(K \subseteq M_1 \cap M_2 \) or \(N \subseteq M_1 \cap M_2 \). But \(M_1 \cap M_2 = J_a(M) \) (lemma 2.6). Hence, either \(K \subseteq M \) or \(N \subseteq M \) a contradiction! Thus \(G_{aj}(M) \) \(j=1,2 \)is a complete subgraph.

Next, let \(N \in G_{a1} \) and \(K \in G_{a2} \), assume that \(N \) and \(K \) are adjacent. Since \(J_a(M) \ a \ll M \) and \(N \cap K \subseteq M_1 \cap M_2 = J_a(M) \) we get \(N \cap K \ a \ll M \) (by lemma 2.2) a contradiction! Thus \(G_a(M) = G_{a1} \cup G_{a2} \) where \(G_{a1} \) and \(G_{a2} \) are two complete subgraphs. \(\blacksquare \)

Corollary 2.12:

1. Let \(M \) be a finitely generated \(R \)-module that satisfies condition* and \(J_a(M) \ a \ll M \). If \(\text{Max}(M) = \{ M_1, M_2 \} \) where \(M_1 \) and \(M_2 \in \mu(J_a) \) then \(G_a(M) \) is disconnected.

2. Let \(R \) be a commutative ring and \(M \) a multiplication \(R \)-module and \(J_a(M) \ a \ll M \). If \(\text{Max}(M) = \{ M_1, M_2 \} \) where \(M_1 \) and \(M_2 \in \mu(J_a) \) then \(G_a(M) \) is disconnected.

The following example shows that \(|\text{Max}(M)| = 2 \) in the previous proposition can’t be omitted.

Example 2.13: Let \(M=\mathbb{Z}_{30} \) as \(\mathbb{Z} \)-module. \(V(G_a(M)) = \{ 2M, 3M, 5M, 6M, 10M, 15M \} \). The figure (2.2) below shows that \(G_a(M) \) is a connected graph while \(\text{Max}(M) = \{ 2M, 3M, 5M \} \) and all contain \(J_a(M) \).

![Figure (2.2)](image)

Proposition 2.14: Let \(M \) be a finitely generated \(R \)-module and \(J_a(M) \ a \ll M \). If \(\text{Max}(M) = \{ M_1, M_2 \} \) where both \(M_1 \) and \(M_2 \) belong to \(\mu(J_a) \) and \(G_a(M) \) contains a cycle, then \(g(G_a(M)) = 3 \).
Proof: since Max(M)={M_1,M_2} and both M_1 & M_2 ∈ μ(J_a) ,then by the use of proposition (2.11) we get that G_a(M) is a union of two disjoint complete subgraphs. By using our assumption that G_a(M) contains a cycle we get g(G_a(M))=3. □

Natural questions might be asked are that: What about g(G_a(M)) if |Max(M)| ≥ 3, will it equal 3? What does the property that these maximal submodules belong to μ(J_a) can effect the answer? Answers to these questions are revealed in the following. But first we need the following condition to be stated.

Condition**: For each M_1, M_2 two maximal submodules of M such that M_1 ∈ μ(J_a) and M_2 ∈ μ(J_a), M_1 ∩ M_2 is non-a-small in M.

Lemma 2.15: Let M be a finitely generated R-module with condition**, and Max(M)={M_i} i=1,...,n where n>2. If there exists only one M_j ∈ μ(J_a) j∈ {1,...,ν}, then G_a(M) has no cycle.

Proof: Assume that G_a(M) contains a cycle, that is: there exists M_1,M_2,M_3 ∈ Max(M) such that M_1 − M_2 − M_3 − M_4 is a cycle in G_a(M). Now, this implies that M_1 & M_2 are adjacent, that is: M_1 ∩ M_2 is non-a-small in M, and hence either M_1 = M_j or M_2 = M_j by condition**, or both of them doesn’t contain J_a(M) (proposition 2.4) a contradiction with our assumption that only one maximal submodule of M doesn’t belong to μ(J_a). Without loss of generality we will assume that M_1 = M_j. But we have M_2 − M_3 are also adjacent which implies that M_2 ∩ M_3 is non-a-small in M and in this case both of them doesn’t contain J_a(M) which is again a contradiction. Thus G_a(M) contains no cycle. □

Proposition 2.16: let M be a finitely generated R-module with condition**. If Max(M)={M_i} i=1,...,n where n>2, and at least two components of Max(M) doesn’t belong to μ(J_a), then g(G_a(M))=3.

Proof: Let |Max(M)|≥3 and choose M_1,M_2,M_3 ∈ Max(M), then we have four possibilities. The first is that all of them are containing J_a(M) and in this case no one of them is adjacent to the other. The second is that one of them doesn’t contain J_a(M) and in this case there is no cycle between them by lemma(2.15), the third is that two of them doesn’t contain J_a(M), say M_1 & M_2, then in this case M_1 ∩ M_2 is non-a-small in M by proposition(2.4). Moreover, M_1 ∩ M_3 and M_2 ∩ M_3 are also non-a-small in M by condition**. This implies that M_1 − M_2 − M_3 − M_4 is a cycle in G_a(M) and clearly g(G_a(M)) = 3. The last possibility is that no one of them contains J_a(M) and by the use of proposition(2.4) we get that each two of them are adjacent, which implies again that M_1 − M_2 − M_3 − M_4 is a cycle in G_a(M) and g(G_a(M)) = 3. □

Example (2.13) shows that the assumption that at least two of the maximal submodules don’t contain J_a(M) can’t be omitted, since |Max(M)|=3 in it but each one of them contains J_a(M) and g(G_a(M))=6.
References

Received: October 8, 2017; Published: November 9, 2017