On Almost Sure Limiting Behavior
of AQSI Sequence

Yun Dong

School of Mathematics
Maanshan Teachers’ College
Maanshan, 243041, China

Ping Hu and Jian Tang

School of Mathematics & Physics Science and Engineering
Anhui University of Technology
Ma’anshan, 243002, China

Abstract

In this paper we establish the Kolmogorov type inequality and an generalized three series theorem for AQSI sequence of random variables. We obtain the strong convergence and a Chung’s type strong law of large numbers for sequence of AQSI.

Mathematics Subject Classification: 60F15

Keywords: AQSI random sequences; Kolmogorov type inequality; generalized three series theorem

1. Introduction

Let \((\Omega, \mathcal{F}, P)\) be a probability space, and let \((X_n)_{n \in \mathbb{N}}\) be a sequence of random variables (r.v.’s) defined on \((\Omega, \mathcal{F}, P)\)

1This work was supported by the RP of Anhui Provincial Department of Education (KJ2017A851).

2Corresponding author
Chandra and Ghosal [3] introduced the notion of asymptotically quadrant sub-independent (AQSI).

Definition 1. A sequence \((X_n)_{n \in \mathbb{N}}\) of r.v.’s is said to be asymptotically quadrant sub-independent (AQSI) if there exists a nonnegative sequence \((q_n)_{n \in \mathbb{N}}\) such that \(q_n \to 0\), as \(n \to \infty\) and for \(\forall i \neq j\)

\[
P(X_i > s, X_j > t) - P(X_i > s)P(X_j > t) \leq q(|i - j|)\alpha_{ij}(s, t), \quad s, t > 0 \quad (1.1)
\]

\[
P(X_i < s, X_j < t) - P(X_i < s)P(X_j < t) \leq q(|i - j|)\beta_{ij}(s, t), \quad s, t < 0 \quad (1.2)
\]

where \(\alpha_{ij}(s, t) \geq 0\) and \(\beta_{ij}(s, t) \geq 0\).

The concept AQSI includes a lot of r.v.’s, such as pairwise independent, negatively associated, negative quadrant dependent, asymptotically quadrant independent. Some mixing r.v.’s also satisfy the above conditions. Therefore, the study of AQSI sequence is more fundamental and difficult. So far, the research for AQSI is not promising. Chandra and Ghosal studied the law of large numbers and Marcinkiewicz-Zygmund type strong law for AQSI. Kim, Ko and Ryu [5] established the Hájeck-Rényi type inequality for AQSI and obtained the strong law of large numbers. In this paper, we first establish the Kolmogorov type inequality and the three series of theorem for AQSI sequence. Based on the research above, we study the almost sure convergence of AQSI and obtain the Chung type law of large numbers.

For a sequence \((X_n)_{n \in \mathbb{N}}\) of r.v.’s defined on the fixed probability space, we set

\[
S_n = \sum_{i=1}^{n} X_i, W_{m,n} = \max_{1 \leq k \leq n} |\sum_{i=m+1}^{m+k} X_i|, \quad X_n^c = -cI(X_n < -c) + X_nI(|X_n| \leq c) + cI(X_n > c),
\]

for any constant \(c > 0\). Let \((a_n, b_n)_{n \in \mathbb{N}}\) be two sequences of positive real numbers and denote \(a_n = O(b_n)\) (resp. \(a_n = o(b_n)\)), if there exists a constant \(C > 0\) satisfying that \(a_n \leq Cb_n\), \(n \to \infty\), (resp. \(a_n / b_n \to 0\)). Finally, the symbol \(C\) denotes a generic constant \((0 < C < \infty)\) which is not necessarily the same in different places.

Several lemmas are needed to establish the main results.

Lemma 1. [3] Let \((X_n)_{n \in \mathbb{N}}\) be a sequence of AQSI, if \((f_n)_{n \in \mathbb{N}}\) is a sequence of nondecreasing (nonincreasing) functions, then \((f_n(X_n))_{n \in \mathbb{N}}\) is also a sequence of AQSI r.v.’s.

Lemma 2. [6] Let \(X_1, X_2, \ldots, X_n\) be a sequence of integrable r.v.’s and let \(a_1^2, a_2^2, \ldots, a_n^2\) be real numbers such that

\[
E(X_{m+1} + \cdots + X_{m+p})^2 \leq a_{m+1}^2 + a_{m+p}^2 \quad (1.3)
\]

for all \(m, p \geq 1, m + p \leq n\). Then we have

\[
EW_{0,n}^2 \leq ((\log(n)/\log 3) + 2)^2 \sum_{k=1}^{n} a_k^2 \quad (1.4)
\]
Throughout the entire paper we will consider, unless otherwise mentioned, r.v.’s \((X_n)_{n\in\mathbb{N}}\) as a AQSI sequence with zero means and \(EX_n^2 < \infty, n = 1, 2, \ldots\), \(\sum_{n=1}^{\infty} q(n) < \infty\) and satisfies the following conditions

\[
\int_0^\infty \int_0^\infty \alpha_{ij}(s,t) ds dt \leq C(EX_i^2 + EX_j^2),
\]

(1.5)

\[
\int_{-\infty}^0 \int_{-\infty}^0 \beta_{ij}(s,t) ds dt \leq C(EX_i^2 + EX_j^2).
\]

(1.6)

The plan of this paper is as follows. The main results will be presented in Section 2 which including a Kolmogorov type inequality and a generalized three series theorem for AQSI sequence, and two illustrative examples.

2. Main Results

With the preliminaries accounted for, the main result may be established.

Theorem 1. (Kolmogorov type inequality) Let \((X_n)_{n\in\mathbb{N}}\) be defined as in section 1, then

\[
E\left(\sum_{i=l+1}^{l+k} X_i \right)^2 \leq C \sum_{i=l+1}^{l+k} EX_i^2,
\]

(2.1)

\[
E\left(\max_{1 \leq k \leq n} \sum_{i=l+1}^{l+k} X_i \right)^2 \leq C \log^2 n \sum_{i=l+1}^{l+n} EX_i^2.
\]

(2.2)

Proof. Suppose \(X^+ = \max\{X, 0\}\) and \(X^- = \max\{-X, 0\}\). It is easy to see \(\{X^+_n\}\) and \(\{X^-_n\}\) form AQSI sequence by Lemma 1. Since

\[
cov(X^+_i, X^+_j) = \int_0^\infty \int_0^\infty [P(X^+_i > s, X^+_j > t) - P(X^+_i > s)P(X^+_j > t)] ds dt
\]

\[
\leq q(|i - j|) \int_0^\infty \int_0^\infty \alpha_{ij}(s,t) ds dt \leq C q(|i - j|)(EX_i^2 + EX_j^2).
\]

We have by the condition \(\sum_{n=1}^{\infty} q(n) < \infty\),

\[
Var\left(\sum_{i=l+1}^{l+k} X^+_i \right) \leq C \sum_{i=l+1}^{l+k} EX_i^2,
\]

(2.3)

Similarly, we have

\[
Var\left(\sum_{i=l+1}^{l+k} X^-_i \right) \leq C \sum_{i=l+1}^{l+k} EX_i^2.
\]

(2.4)
Noticing $EX_n = 0$, we have

$$E\left(\sum_{i=l+1}^{l+k} X_i \right)^2 = Var\left(\sum_{i=l+1}^{l+k} X_i \right)$$

$$\leq 2 \left[Var\left(\sum_{i=l+1}^{l+k} X_i^+ \right) + Var\left(\sum_{i=l+1}^{l+k} X_i^- \right) \right] \leq C \sum_{i=l+1}^{l+k} EX_i^2$$

By lemma 2, we have

$$E\left(\max_{1 \leq k \leq n} \sum_{i=l+1}^{l+k} X_i \right)^2 \leq ((\log n / \log 3) + 2)^2 C \sum_{i=l+1}^{l+n} EX_i^2 \leq C \log^2 n \sum_{i=l+1}^{l+n} EX_i^2.$$

\[\square\]

Theorem 2. Suppose that

$$\sum_{n=1}^{\infty} \log^2 n Var X_n < \infty. \quad (2.5)$$

Then $\sum_{n=1}^{\infty} X_n$ a.s. convergence.

Proof. From (2.1) and (2.5), if integer $m > n \to \infty$, we have

$$E(S_m - S_n)^2 \leq C \sum_{k=n+1}^{m} EX_k^2 \to 0.$$

Hence $(S_n)_{n \in \mathbb{N}}$ is Cauchy in L_2. Since L^2 is complete, there exists a unique r.v.S_∞ (up to a.s. equivalence) in L^2, such that $S_n \to S_\infty$ in L^2, this together with (2.1) and (2.5) imply

$$P(|S_{2^k} - S_\infty| > \varepsilon) \leq \varepsilon^{-2} E(S_{2^k} - S_\infty)^2$$

$$= O[\limsup_{n \to \infty} E(S_n - S_{2^k})^2]$$

$$\leq C \sum_{i=2^k+1}^{\infty} EX_i^2 = C \sum_{i=2^k+1}^{\infty} EX_i^2 \log^2 i \cdot \frac{1}{\log^2 i}$$

$$\leq \frac{C}{(\log 2^k)^2} \sum_{i=2^k+1}^{\infty} \log^2 i EX_i^2 = O(k^{-2}).$$

Therefore

$$\sum_{k=1}^{\infty} P(|S_{2^k} - S_\infty| > \varepsilon) < \infty. \quad (2.6)$$
Theorem 1 and (2.5) imply
\[
\sum_{k=1}^{\infty} P(\max_{2^{k-1} \leq j \leq 2^k} |S_j - S_{2^{k-1}}| \geq \varepsilon) \leq O(\sum_{k=1}^{\infty} (\log 2^k)^2 \sum_{j=2^{k-1}+1}^{2^k} EX_j^2)
\]
\[
= O(\sum_{k=1}^{\infty} \sum_{j=2^{k-1}+1}^{2^k} (\log j)^2 EX_j^2) = \sum_{j=1}^{\infty} (\log j)^2 EX_j^2 < \infty. \tag{2.7}
\]

By (2.6), (2.7) and Borel-Cantelli lemma, we have, as \(k \to \infty\)
\[
S_{2^k} \to S_\infty \text{ a.s. and } \max_{2^{k-1} \leq j \leq 2^k} |S_j - S_{2^{k-1}}| \to 0 \text{ a.s.}
\]

According to the method of subsequence, we have
\[
S_n \to S_\infty \text{ a.s., } n \to \infty.
\]

\[\square\]

Theorem 3. Assume

1. \[
\sum_{n=1}^{\infty} P(|X_n| > c) < \infty, \tag{2.8}
\]

2. \[
\sum_{n=1}^{\infty} EX_n^c < \infty, \tag{2.9}
\]

3. \[
\sum_{n=1}^{\infty} \log^2 n Var X_n^c < \infty. \tag{2.10}
\]

Then
\[
\sum_{n=1}^{\infty} X_n \text{ a.s. convergence.} \tag{2.11}
\]

Proof. It is easy to see that \((X_n^c)_{n \in \mathbb{N}}\) also form a sequence of AQSI and we have for every \(i \neq j\)
\[
P(X_i^c > s, X_j^c > t) - P(X_i^c > s)P(X_j^c > t) \leq q(|i - j|)\alpha_{ij}(s, t), \ s, t > 0
\]
\[
P(X_i^c < s, X_j^c < t) - P(X_i^c < s)P(X_j^c < t) \leq q(|i - j|)\beta_{ij}(s, t), \ s, t < 0
\]
where
\[
\alpha_{ij}(s, t) = \begin{cases}
\alpha_{ij}(s, t), & 0 < s, t \leq c \\
0, & \text{otherwise}
\end{cases}
\]
and

\[\beta^*_{ij}(s,t) = \begin{cases} \beta_{ij}(s,t), & -c \leq s, t < 0 \\
0, & \text{otherwise} \end{cases} \]

Hence, by (2.10) and Theorem 2, we have

\[\sum_{n=1}^{\infty} (X^c_n - EX^c_n) < \infty \text{ a.s.} \quad (2.12) \]

(2.9) and (2.12) imply

\[\sum_{n=1}^{\infty} X^c_n < \infty \text{ a.s.} \quad (2.13) \]

From (2.8), we have

\[\sum_{n=1}^{\infty} P(X_n \neq X^c_n) = \sum_{n=1}^{\infty} P(|X_n| > c) < \infty, \]

Thus the Borel-Catelli lemma implies that

\[P(X_n \neq X^c_n, \text{i.o.}) = 0, \quad (2.14) \]

(2.13) and (2.14) imply \(\sum_{n=1}^{\infty} X_n \) a.s. convergence.

Theorem 4. Let functions: \(\varphi_n(x) : \mathbb{R} \to \mathbb{R}^+ \) be nonnegative, even, continuous and nondecreasing on \((0, \infty)\) and suppose that one of the following two conditions prevails:

(a) \(x/\varphi_n(x) \) is nondecreasing in \(x > 0 \) for each \(n \geq 1 \);

(b) \(x/\varphi_n(x) \) and \(\varphi_n(x)/x^2 \) are nonincreasing in \(x > 0 \) for each \(n \geq 1 \);

Furthermore, let \((a_n)_{n \in \mathbb{N}} \) be a sequence of positive constants with \(a_n \uparrow \infty \), if the series

\[\sum_{n=1}^{\infty} \log^2 n E\varphi_n(X_n) \varphi_n(a_n) < \infty, \quad (2.15) \]

then the series \(\sum_{n=1}^{\infty} \frac{X_n}{a_n} \) converges a.s. and

\[\lim_{n} a_n^{-1} S_n \to 0 \text{ a.s.} \quad (2.16) \]

Proof. By Kronecker lemma, to prove (2.16), it is sufficient to prove the convergence of \(\sum_{n=1}^{\infty} \frac{X_n}{a_n} \) a.s. Since \(\varphi_n(x) \) is nondecreasing on \(x > 0 \), we have

\[P(|X_n| \geq a_n) \leq \int_{|X_n| \geq a_n} \frac{\varphi_n(X_n)}{\varphi_n(a_n)} dP \leq \frac{E\varphi_n(X_n)}{\varphi_n(a_n)}, \]

this and (2.15) imply

\[\sum_{n=1}^{\infty} P(|X_n| \geq a_n) < \infty. \quad (2.17) \]
In case (a), for $|x| \leq a_n$, we have
\[
\frac{|x|}{\varphi_n(x)} \leq \frac{a_n}{\varphi_n(a_n)},
\]
and
\[
\frac{x^2}{a_n^2} \leq \frac{\varphi_n^2(x)}{\varphi_n^2(a_n)} \leq \frac{\varphi_n(x)}{\varphi_n(a_n)}.
\]
In case (b), by $\varphi_n^2(x) \downarrow$, for $|x| \leq a_n$, we have
\[
\frac{x^2}{\varphi_n(x)} \leq \frac{a_n}{\varphi_n(a_n)}.
\]
Hence, in case (a) or (b), for $|x| \leq a_n$, we have
\[
\frac{x^2}{a_n^2} \leq \frac{\varphi_n(x)}{\varphi_n(a_n)}.
\]

From C_r inequality, we have for any n
\[
E(X_n^a_n)^2 \leq 3E(a_n^2I_{(X_n < -a_n)} + X_n^2I_{(|X_n| \leq a_n)} + a_n^2I_{(X_n > a_n)})
\]
\[
= \mathcal{O}(Ea_n^2I_{(|X_n| > a_n)} + EX_n^2I_{(|X_n| \leq a_n)})
\]
Noticing that $\varphi_n(x)$ are even functions and nondecreasing in $x > 0$, we have
\[
Ea_n^2I_{(|X_n| > a_n)} \leq Ea_n^2\frac{\varphi_n(X_n)}{\varphi_n(a_n)}I_{(|X_n| > a_n)} \leq \frac{a_n^2}{\varphi_n(a_n)}E\varphi_n(X_n).
\]
By (2.18), we have
\[
EX_n^2I_{(|X_n| \leq a_n)} = \int_{|X_n| \leq a_n} X_n^2dP \leq \frac{a_n^2}{\varphi_n(a_n)} \int_{|X_n| \leq a_n} \varphi_n(X_n)dP \leq \frac{a_n^2}{\varphi_n(a_n)}E\varphi_n(X_n),
\]
Hence
\[
E(X_n^a_n)^2 = \mathcal{O}\left(\frac{a_n^2}{\varphi_n(a_n)}E\varphi_n(X_n)\right),
\]
This and (2.15) imply
\[
\sum_{n=1}^{\infty} \frac{\log^2 nE(X_n^a_n)^2}{a_n^2} = \mathcal{O}\left[\sum_{n=1}^{\infty} \frac{\log^2 nE\varphi_n(X_n)}{\varphi_n(a_n)}\right] < \infty.
\]
In case (a), we have

$$|EX_n^{a_n}| = |E(-a_nI_{(x_n<-a_n)} + X_nI_{(|x_n|\leq a_n)} + a_nI_{(x_n>a_n)})|$$

$$\leq Ea_nI_{(|x_n|>a_n)} + |EX_nI_{(|x_n|\leq a_n)}|$$

$$\leq Ea_n\varphi_n(X_n)I_{(|x_n|>a_n)} + \int_{|x_n|\leq a_n} X_n dP$$

$$\leq \frac{a_n}{\varphi_n(a_n)}E\varphi_n(X_n) + \frac{a_n}{\varphi_n(a_n)}\int_{|x_n|>a_n} \varphi_n(X_n) dP$$

$$\leq \frac{2a_n}{\varphi_n(a_n)}E\varphi_n(X_n)$$

On the other hand, in case (b), note that $EX_n = 0$ and $x/\varphi_n(x) \downarrow$, we have

$$|EX_n^{a_n}| \leq Ea_nI_{(|x_n|>a_n)} + |EX_nI_{(|x_n|\leq a_n)}|$$

$$= a_nE|I_{(|x_n|>a_n)} + |EX_nI_{(|x_n|>a_n)}|$$

$$\leq \frac{a_n}{\varphi_n(a_n)}E\varphi_n(X_n) + \frac{a_n}{\varphi_n(a_n)}\int_{|x_n|>a_n} \varphi_n(X_n) dP$$

$$\leq \frac{2a_n}{\varphi_n(a_n)}E\varphi_n(X_n)$$

Hence

$$\sum_{n=1}^{\infty} E\left[\frac{X_n^{a_n}}{a_n} \right] \leq 2 \sum_{n=1}^{\infty} \frac{E\varphi_n(X_n)}{\varphi_n(a_n)} < \infty . \quad (2.21)$$

Combine (2.17), (2.20) and (2.21) and Theorem 3, we have $\sum_{n=1}^{\infty} \frac{X_n}{a_n}$ a.s.convergence. Thus the proof is complete. □

Let $\varphi_n(x) = |x|^p, 0 < p \leq 2$ in Theorem 4, we get the following lemmas.

Corollary 1. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of positive constants with $a_n \uparrow \infty, 0 < p \leq 2$, if $\sum_{n=1}^{\infty} \frac{\log^2 nE|X_n|^p}{a_n^2} < \infty$, then $a_n^{-1}S_n = o(1)$ a.s. as $n \to \infty$.

Take $a_n = n^{1/p}$ or $a_n = n^{1/p}(\log n)^{(3+\delta)/p}, \delta > 0$ respectively in Corollary 1, we immediately obtain the following corollary 2 and 3.

Corollary 2. Let $E|X_n|^p \leq C\log^{-3-\delta} n, \delta > 0, 0 < p \leq 2$, then $n^{-1/p}S_n = o(1)$ a.s. as $n \to \infty$.

Corollary 3. Let $E|X_n|^p \leq C, 0 < p \leq 2$, then $n^{-1/p}(\log n)^{-(3+\delta)/p}S_n = o(1)$ a.s. as $n \to \infty$.

Corollary 4. Let $(b_n)_{n \in \mathbb{N}}$ be a positive sequence of nondecreasing real numbers. If $\sum_{n=1}^{\infty} \frac{EX_n^2}{b_n} < \infty$, then $(b_n \log n)^{-1}S_n \to 0$ as $n \to \infty$.

Proof. By taking $a_n = b_n \log n$ in Corollary 1 which complete the proof. □
Corollary 5. If $\sum_{n=1}^{\infty} EX_n^2 < \infty$, then for $0 < p < 2$, we have $n^{-1/p}(\log n)^{-1} S_n \to 0$ as $n \to \infty$.

Corollary 6. If $\sup_n EX_n^2 < \infty$, then for $0 < p < 2$, we have $n^{-1/p}(\log n)^{-1} S_n \to 0$ as $n \to \infty$.

In recent years, two-dimension dependent r.v.’s was usually described by Copula, with the purpose of a wider usage of two-dimension dependent r.v.’s by putting forward some special r.v.’s. Let us recall the definition of copula.

Definition 2. Let X and Y be r.v.’s with distribution functions $F_X(x)$ and $F_Y(y)$, the function $C_{X,Y}(u,v)$ defined for $u,v \in [0,1]$ such that

$$P(X \leq x, Y \leq y) = C_{X,Y}(F_X(x), F_Y(y)) = C_{X,Y}(\mu, \nu)$$

is called the copula of X and Y.

The theory of Copula can be dated back to 1959, when Sklar related multiple distribution function to Copula in the form of Theorem. We can establish multiple distribution by Copula function and the marginal distributions.

As pointed in [4], in order to satisfy the existence of AQSI sequence in (1.5) and (1.6), we need to consider if r.v.’s can meet the following Copula:

$$C_{X_i,X_j}(u,v) - uv \leq \rho_{ij} uv (1-u)(1-v),$$

(2.22)

Where $(u,v) \in [0,1] \times [0,1], \rho_{ij} \geq 0$ and if $|i-j| \to \infty$, $\rho_{ij} \to 0$.

Denote $q(|i-j|) = \rho_{ij}$, for the sequence which satisfies (2.19), we have

$$P(X_i \leq s, X_j \leq t) - P(X_i \leq s) P(X_j \leq t) \leq q(|i-j|) P(X_i \leq s) P(X_j \leq t) P(X_i > s) P(X_j > t)$$

It is not difficult to verify

$$P(X_i > s, X_j > t) - P(X_i > s) P(X_j > t) = P(X_i \leq s, X_j \leq t) - P(X_i \leq s) P(X_j \leq t)$$

Therefore, s is replaced by $s - \frac{1}{n}$, t is replaced by $t - \frac{1}{n}$, let $n \to \infty$, we conclude that the sequence above is AQSI, where

$$\alpha_{ij}(s,t) = P(X_i \leq s) P(X_j \leq t) P(X_i > s) P(X_j > t)$$

$$\beta_{ij}(s,t) = P(X_i < s) P(X_j < t) P(X_i \geq s) P(X_j \geq t)$$

Note the definitions of α_{ij} and β_{ij} and $(E|X|)^2 \leq E X^2$, we have

$$\int_0^\infty \int_0^\infty \alpha_{ij}(s,t) dsdt \leq \int_0^\infty \int_0^\infty P(X_i > s) P(X_j > t) dsdt$$

$$= E X_i^+ E X_j^+ \leq E|X_i| E|X_j|$$

$$\leq \frac{(E|X_i|)^2 + (E|X_j|)^2}{2} \leq \frac{EX_i^2 + EX_j^2}{2}$$
\[
\int_{-\infty}^{0} \int_{-\infty}^{0} \beta_{ij}(s,t) ds dt \leq \int_{-\infty}^{0} \int_{-\infty}^{0} P(X_i < s) P(X_j < t) ds dt
\]
\[
= EX_i^- EX_j^- \leq E|X_i| E|X_j|
\]
\[
\leq \frac{(E|X_i|)^2 + (E|X_j|)^2}{2} \leq \frac{EX_i^2 + EX_j^2}{2}
\]

Example 5. Let \((X_n)_{n \in \mathbb{N}}\) be a sequence of r.v.'s such that \(EX_n^2 < \infty, n = 1, 2, \cdots\), and with Copula:

\[
C_{X_i, X_j}(u, v) = uv[1 - \frac{1}{(i-j)^2}(1-u)(1-v)].
\]

Example 6. Let \((X_n)_{n \in \mathbb{N}}\) be a sequence of r.v.'s such that \(EX_n^2 < \infty, n = 1, 2, \cdots\), and with Copula:

\[
C_{X_i, X_j}(u, v) = \frac{uv}{1 - \frac{1}{(i-j)^2}(1-u)(1-v)}.
\]

References

Received: May 1, 2017; Published: June 1, 2017