\{C_k, P_k, S_k\}-Decompositions of Balanced Complete Bipartite Graphs

Jenq-Jong Lin and Min-Jen Jou

Ling Tung University, Taichung 40852, Taiwan

Abstract

Let \(L = \{H_1, H_2, \ldots, H_r\} \) be a family of subgraphs of a graph \(G \). An \(L \)-decomposition of \(G \) is an edge-disjoint decomposition of \(G \) into positive integer \(\alpha_i \) copies of \(H_i \), where \(i \in \{1, 2, \ldots, r\} \). Let \(C_k, P_k \) and \(S_k \) denote a cycle, a path and a star with \(k \) edges, respectively. In this paper, we prove that a balanced complete bipartite graph with \(2n \) vertices has a \(\{C_k, P_k, S_k\} \)-decomposition if and only if \(k \) is even, \(4 \leq k \leq n \) and \(n^2 \equiv 0 \pmod{k} \).

Mathematics Subject Classification: 05C51

Keywords: cycle, path, star, decomposition, balanced complete bipartite graph

1 Introduction

Let \(L = \{H_1, H_2, \ldots, H_r\} \) be a family of subgraphs of a graph \(G \). An \(L \)-decomposition of \(G \) is an edge-disjoint decomposition of \(G \) into positive integer \(\alpha_i \) copies of \(H_i \), where \(i \in \{1, 2, \ldots, r\} \). Furthermore, if each \(H_i(i \in \{1, 2, \ldots, r\}) \) is isomorphic to a graph \(H \), then we say that \(G \) has an \(H \)-decomposition.

For positive integers \(m \) and \(n \), \(K_{m,n} \) denotes the complete bipartite graph with parts of sizes \(m \) and \(n \). A complete bipartite graph is balanced if \(m = n \). A \(k \)-cycle, denoted by \(C_k \), is a cycle of length \(k \). A \(k \)-star, denoted by \(S_k \), is
the complete bipartite graph $K_{1,k}$. A k-path, denoted by P_k, is a path with k edges.

Decompositions of some families of graphs into k-cycles has been a popular topic of research in graph theory; see [4, 7] for surveys of this topic. Articles of P_k-decompositions of interest include [9, 11]. Decompositions of graphs into k-stars have also attracted a fair share of interest; see [16, 17, 18]. The study of $\{G, H\}$-decomposition was introduced by Abueida and Daven in [1]. Abueida and Daven [2] investigated the problem of $\{K_k, S_k\}$-decomposition of the complete graph K_n. Abueida and O’Neil [3] settled the existence problem for $\{C_k, S_{k-1}\}$-decomposition of the complete multigraph λK_n for $k \in \{3, 4, 5\}$. In [10], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the existence of a $\{G, H\}$-factorization of λK_n where $G, H \in \{C_n, P_{n-1}, S_{n-1}\}$. Furthermore, Shyu [12] investigated the problem of decomposing K_n into paths and stars with k edges, giving a necessary and sufficient condition for $k = 3$. In [13], Shyu considered the existence of a decomposition of K_n into paths and cycles with k edges, giving a necessary and sufficient condition for $k = 4$. Shyu [14] investigated the problem of decomposing K_n into cycles and stars with k edges, settling the case $k = 4$. Recently, Lee [5, 6] established necessary and sufficient conditions for the existence of a $\{C_k, S_k\}$-decomposition of a complete bipartite graph and $\{P_k, S_k\}$-decomposition of a balanced complete bipartite graph. In this paper, we consider the existence of a $\{C_k, P_k, S_k\}$-decomposition of the balanced complete bipartite graph, giving necessary and sufficient conditions.

2 Preliminaries

Let G be a graph. The degree of a vertex x of G, denoted by $\deg_G x$, is the number of edges incident with x. The vertex of degree k in S_k is the center of S_k. For $A \subseteq V(G)$ and $B \subseteq E(G)$, we use $G[A]$ and $G - B$ to denote the subgraph of G induced by A and the subgraph of G obtained by deleting B, respectively. When G_1, G_2, \ldots, G_m are graphs, not necessarily disjoint, we write $G_1 \cup G_2 \cup \cdots \cup G_m$ or $\bigcup_{i=1}^m G_i$ for the graph with vertex set $\bigcup_{i=1}^m V(G_i)$ and edge set $\bigcup_{i=1}^m E(G_i)$. When the edge sets are disjoint, $G = \bigcup_{i=1}^m G_i$ expresses the decomposition of G into G_1, G_2, \ldots, G_m. nG is the short notation for the union of n copies of disjoint graphs isomorphic to G. Let $(v_0, v_1, \ldots, v_{k-1})$ denote the cycle C_k with vertices $v_0, v_1, \ldots, v_{k-1}$ and edges $v_0v_1, v_1v_2, \ldots, v_{k-1}v_0$, let $v_0v_1\ldots v_k$ denote the path P_k with vertices v_0, v_1, \ldots, v_k and edges $v_0v_1, v_1v_2, \ldots, v_{k-1}v_k$ and let $(v_0; v_1, v_2, \ldots, v_k)$ denote the star S_k with centered at vertex v_0 and v_1, v_2, \ldots, v_k are other vertices. For any vertex x of a digraph G, the outdegree $\deg^+_G x$ (respectively, indegree $\deg^-_G x$) of x is the number of arcs incident from (respectively, to) x.
Proposition 2.1. (Sotteau [15]) For positive integers \(m, n \) and \(k \), the graph \(K_{m,n} \) has a \(C_k \)-decomposition if and only if \(m, n \) and \(k \) are even, \(k \geq 4 \), \(\min\{m, n\} \geq k/2 \), and \(mn \equiv 0 \pmod{k} \).

Proposition 2.2. (Ma et al. [8]) For positive integers \(n \) and \(k \), the graph obtained by deleting a 1-factor from \(K_{n,n} \) has a \(C_k \)-decomposition if and only if \(n \) is odd, \(k \) is even, \(4 \leq k \leq 2n \), and \(n(n-1) \) is divisible by \(k \).

Lemma 2.3. If \(k \) is an even integer with \(k \geq 4 \), then there exist \((k/2-1) \) edge-disjoint \(k \)-cycles in \(K_{k/2,k} \).

Proof. If \(k \equiv 0 \pmod{4} \), then \(k/2 \) is even. By Proposition 2.1, there exists a \(C_k \)-decomposition \(\mathcal{H} \) of \(K_{k/2,k} \) with \(|\mathcal{H}| = k/2 \), in which \(k \)-cycles are edge-disjoint. If \(k \equiv 2 \pmod{4} \), then \(k/2 \) is odd. Proposition 2.2 implies that \(K_{k/2,k/2} \) with a 1-factor removed has a \(C_k \)-decomposition \(\mathcal{H}' \) with \(|\mathcal{H}'| = (k-2)/4 \). Hence there exist \(2(k-2)/4 = k/2 - 1 \) edge-disjoint \(k \)-cycles in \(K_{k/2,k} \). This completes the proof.

Proposition 2.4. (Parker [9]) There exists a \(P_k \)-decomposition of \(K_{m,n} \) if and only if \(mn \equiv 0 \pmod{k} \) and one of the following cases holds.

<table>
<thead>
<tr>
<th>Case</th>
<th>(k)</th>
<th>(m)</th>
<th>(n)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>even</td>
<td>even</td>
<td>even</td>
<td>(k \leq 2m, k \leq 2n), not both equalities</td>
</tr>
<tr>
<td>2</td>
<td>even</td>
<td>even</td>
<td>odd</td>
<td>(k \leq 2m - 2, k \leq 2n)</td>
</tr>
<tr>
<td>3</td>
<td>even</td>
<td>odd</td>
<td>even</td>
<td>(k \leq 2m, k \leq 2n - 2)</td>
</tr>
<tr>
<td>4</td>
<td>odd</td>
<td>even</td>
<td>even</td>
<td>(k \leq 2m - 1, k \leq 2n - 1)</td>
</tr>
<tr>
<td>5</td>
<td>odd</td>
<td>even</td>
<td>odd</td>
<td>(k \leq 2m - 1, k \leq n)</td>
</tr>
<tr>
<td>6</td>
<td>odd</td>
<td>odd</td>
<td>even</td>
<td>(k \leq m, k \leq 2n - 1)</td>
</tr>
<tr>
<td>7</td>
<td>odd</td>
<td>odd</td>
<td>odd</td>
<td>(k \leq m, k \leq n)</td>
</tr>
</tbody>
</table>

By Proposition 2.4, the following result can be obtained.

Lemma 2.5. If \(k \) is an even integer with \(k \geq 4 \), then there exist \(k/2 \) edge-disjoint \(k \)-paths in \(K_{k/2,k} \).

Proposition 2.6. (Yamamoto et al. [18]) For integers \(m \) and \(n \) with \(m \geq n \geq 1 \), the graph \(K_{m,n} \) has an \(S_k \)-decomposition if and only if \(m \geq k \) and

\[
\begin{cases}
 m \equiv 0 \pmod{k} & \text{if } n < k \\
 mn \equiv 0 \pmod{k} & \text{if } n \geq k.
\end{cases}
\]

3 Main results

The goal of this paper is to settle the \(\{C_k, P_k, S_k\} \)-decomposition problem for \(K_{n,n} \). We prove the following theorem.
Main Theorem. Let k and n be positive integers. The graph $K_{n,n}$ has a \{C_k, P_k, S_k\}-decomposition if and only if k is even, $4 \leq k \leq n$ and n^2 is divisible by k.

We first give necessary conditions for a \{C_k, P_k, S_k\}-decomposition of $K_{n,n}$.

Lemma 3.1. If $K_{n,n}$ has a \{C_k, P_k, S_k\}-decomposition, then k is even, $4 \leq k \leq n$ and $n^2 \equiv 0 \pmod{k}$.

Proof. Since bipartite graphs contain no odd cycle, k is even. In addition, the minimum length of a cycle and the maximum size of a star in $K_{n,n}$ are 4 and n, respectively, we have $4 \leq k \leq n$. Finally, the size of each member in the decomposition is k and $|E(K_{n,n})| = n^2$; thus $n^2 \equiv 0 \pmod{k}$.

Throughout this paper, let (A, B) denote the bipartition of $K_{n,n}$, where $A = \{a_0, a_1, \ldots, a_{n-1}\}$ and $B = \{b_0, b_1, \ldots, b_{n-1}\}$. We begin the discussion with the smallest value of k, namely $k = 4$.

Lemma 3.2. For an even integer $n \geq 4$, then $K_{n,n}$ has a \{C_4, P_4, S_4\}-decomposition.

Proof. First, $K_{4,4}$ can be decomposed into the following one copy of C_4, two copies of P_4 and one copy of S_4: (b_0, a_0, b_1, a_1), $b_2a_0b_3a_1b_1$, $b_3a_1b_2a_0b_0$ and $(a_3; b_0, b_1, b_2, b_3)$. Note that $K_{n,n} = K_{4,4} \cup K_{n-4,4} \cup K_{n,n-4}$ for $n \geq 6$. In addition, by Proposition 2.1, $K_{n-4,4}$ and $K_{n,n-4}$ have C_4-decompositions. Hence there exists a \{C_4, P_4, S_4\}-decomposition of $K_{n,n}$ for even $n \geq 4$.

With Lemma 3.2 in mind, it is assumed that $k \geq 6$ in the sequel. We now show that the necessary conditions are also sufficient. The proof is divided into cases $n = k$, $k < n < 2k$, and $n \geq 2k$, which are treated in Lemmas 3.3, 3.4, and 3.5, respectively.

Lemma 3.3. For an even integer $k \geq 6$, then $K_{k,k}$ has a \{C_k, P_k, S_k\}-decomposition.

Proof. We distinguish two cases by the values of k.

Case 1. $k \equiv 0 \pmod{4}$.

Then $k/2$ is even and $K_{k,k} = 2K_{k/2,k/2+2} \cup K_{k,k/2-2}$ for $k \geq 6$. By Propositions 2.1 and 2.4, $2K_{k/2,k/2+2}$ has a C_k-decomposition and a P_k-decomposition. In addition, by Proposition 2.6, $K_{k,k/2-2}$ has an S_k-decomposition. Hence, $K_{k,k}$ has a \{C_k, P_k, S_k\}-decomposition.

Case 2. $k \equiv 2 \pmod{4}$.

Let $G = K_{k,k}[[a_0, a_1, \ldots, a_{k/2-1}] \cup \{b_0, b_1, \ldots, b_{k/2}\}]$, $F = K_{k,k}[[a_0, a_1, a_{k/2+1}, \ldots, a_{k-1}] \cup \{b_0, b_1, \ldots, b_{k/2}\}]$ and $H = K_{k,k}[[a_0, a_1, \ldots, a_{k-1}] \cup \{b_{k/2+1}, b_{k/2+2} \ldots,$
Finally, \(C_{k,k} = G \cup F \cup H \). We will show that \(G \cup F \) can be decomposed into two copies of \(C_k \) and \((k/2 - 1)\) copies of \(P_k \) as follows.

First, a decomposition of \(G \cup F \) into \(k \)-paths is given by the \((k/2 + 1)\) following paths:

\[
P^{(i,j)} = b_{2j}a_{ik/2}b_{2j+1}a_{ik/2+1} \ldots b_{2j+k/2-1}a_{ik/2+(k/2-1)}b_{2j+k/2}
\]

for \(i = 0, 1 \) and \(j = 0, 1, \ldots, (k-2)/4 \), where the subscripts of \(b \) are taken modulo \((k/2 + 1)\).

Next, let \(P^{(0,1)'} \) and \(P^{(1,0)'} \) be two new \(k \)-paths obtained by

\[
P^{(0,1)'} = P^{(0,1)} \cup \{a_{k/2-1}b_0, a_{k/2}b_1\} - \{a_{k/2-1}b_0, a_{k/2}b_1\},
\]

\[
P^{(1,0)'} = P^{(1,0)} \cup \{a_{k/2-1}b_0, a_{k/2}b_1\} - \{a_{k/2}b_0, a_{k/2}b_1\}.
\]

Finally, \(C^{(1)} \) and \(C^{(2)} \) are two \(k \)-cycles are obtained by

\[
C^{(1)} = P^{(0,0)} \cup \{a_{k/2-1}b_0\} - \{a_{k/2-1}b_k/2\},
\]

\[
C^{(2)} = P^{(1,0)'} \cup \{a_{k/2-1}b_k/2\} - \{a_{k/2-1}b_0\}.
\]

Thus \(G \cup F \) can be decomposed into \(C^{(1)}, C^{(2)}, P^{(0,1)'}, P^{(1,1)} \) and \(P^{(i,j)} \) for \(i = 0, 1, j = 2, 3, \ldots, (k-2)/4 \). On the other hand, by Proposition 2.6 \(H \) has an \(S_k \)-decomposition. Hence \(K_{k,k} \) has a \(\{C_k, P_k, S_k\} \)-decomposition.

\[\square\]

Lemma 3.4. Let \(k \) be a positive even integer and let \(n \) be a positive integer with \(6 \leq k < n < 2k \). If \(n^2 \) is divisible by \(k \), then \(K_{n,n} \) has a \(\{C_k, P_k, S_k\} \)-decomposition.

Proof. Let \(n = k + r \). From the assumption \(k < n < 2k \), we have \(0 < r < k \). Let \(t = r^2/k \). Since \(k \mid n^2 \), we have \(k \mid r^2 \), which implies that \(t \) is a positive integer. The proof is divided into two parts according to the value of \(t \).

Case 1. \(t = 1 \).

Then \(k = r^2 \). This implies that \(r \geq 4 \) and \(k \geq 4r \). Let

\[
G_1 = K_{k,n}[\{a_r, a_{r+1}, \ldots, a_{k-1}\}, \{b_r, b_{r+1}, \ldots, b_{k-1}\}],
\]

\[
G_2 = K_{k,n}[\{a_0, a_1, \ldots, a_{r-1}\}, \{b_0, b_1, \ldots, b_{k-1}\}],
\]

\[
G_3 = K_{k,n}[\{a_r, a_{r+1}, \ldots, a_{k+r-1}\}, \{b_0, b_1, \ldots, b_r\}],
\]

\[
G_4 = K_{k,n}[\{a_k, a_{k+1}, \ldots, a_{k+r-1}\}, \{b_r, b_{r+1}, \ldots, b_{k+r-1}\}],
\]

\[
G_5 = K_{k,n}[\{a_0, a_1, \ldots, a_{k-1}\}, \{b_k, b_{k+1}, \ldots, b_{k+r-1}\}].
\]

Note that \(G_1 = K_{k-k,k-r} \) and \(G_i = K_{k,r} \) (or \(K_{r,k} \)) for \(2 \leq i \leq 5 \). Clearly \(K_{n,n} = G_1 + G_2 + G_3 + G_4 + G_5 \). By Propositions 2.1 and 2.6, \(G_5 \) has a \(C_k \)-decomposition and \(G_i \) has a \(S_k \)-decomposition for \(2 \leq i \leq 5 \).

By Sotteau ([15], p.77), there are \((r-1)^2\) copies of \(k \)-cycles in the decom-
position \(\mathcal{D} \) of \(G_1 \). We take two \(k \)-cycles in \(\mathcal{D} \):

\[
C_{0,0} = (a_1, b_{k/4-1}, a_{k/2-2}, b_{k/4-2}, a_{k/2-4}, b_{k/4-3}, a_{k/2-6}, b_{k/4-4}, \ldots,
, a_2, b_0, a_0, b_{k/2-1}, a_{k/2-1}, b_{k/2-2}, a_{k/2-3}, b_{k/2-3}, a_{k/2-5}, b_{k/2-4}, \ldots, a_3, b_{k/4}),
\]

\[
C_{0,1} = (a_{r+k/2-2}, b_{k/4-1}, a_{r+1}, b_{k/4}, a_{r+3}, b_{k/4+1}, a_{r+5}, b_{k/4+2}, \ldots,
, a_{r+k/2-1}, b_{k/2-1}, a_r, b_r, a_{r+2}, b_1, a_{r+4}, b_2, a_{r+6}, b_3, \ldots, a_{r+k/2-4}, b_{k/4-2})
\]

and interchange the two edges \(a_1b_{k/4-1} \) and \(a_{r+k/2-2}b_{k/4-1} \). In doing so, we obtain two paths: \(P_{0,0} = C_{0,0} - \{a_1b_{k/4-1}\} \cup \{a_{r+k/2-2}b_{k/4-1}\} \) and \(P_{0,1} = C_{0,1} - \{a_{r+k/2-2}b_{k/4-1}\} \cup \{a_1b_{k/4-1}\} \). Thus \(K_{n,n} \) can be decomposed into \((r-1)^2 - 2\) copies of \(C_k \), two copies of \(P_k \) and \(4r \) copies of \(S_k \). This settles the case 1.

Case 2. \(t \geq 2 \).

Let \(G'_0 = K_{n,n}[\{a_0, a_1, \ldots, a_{k/2-1}\} \cup \{b_0, b_1, \ldots, b_{k-1}\}] \) and \(G'_1 = K_{n,n}[\{a_{k/2}, a_{k/2+1}, \ldots, a_{k-1}\} \cup \{b_0, b_1, \ldots, b_{k-1}\}] \); and \(H' = K_{n,n}[\{a_0, a_1, \ldots, a_{k+r-1}\} \cup \{b_0, b_1, \ldots, b_{k+r-1}\}] \). Clearly \(G_{n,n} = G'_0 \cup G'_1 \cup F' \cup H' \). Note that \(G'_0 \) and \(G'_1 \) are isomorphic to \(K_{k/2,k} \), \(H' \) is isomorphic to \(K_{r,r} \), and \(F' \) is isomorphic to \(K_{r,k} \), which can be decomposed into \(r \) copies of \(S_k \) by Proposition 2.6.

Let \(p_0 = \lceil t/2 \rceil \) and \(p_1 = \lfloor t/2 \rfloor \). In the following, we will show that \(G'_0 \) can be decomposed into \(p_0 \) copies of \(C_k \) and \(k/2 \) copies of \(S_{k-2p_0} \), \(G'_1 \) can be decomposed into \(p_1 \) copies of \(P_k \) and \(k/2 \) copies of \(S_{k-2p_1} \), \(H' \) can be decomposed into \(k/2 \) copies of \(S_{2p_0} \), \(k/2 \) copies of \(S_{2p_1} \) and \(r \) copies of \(S_k \).

We first show the required decomposition of \(G'_0 \) and \(G'_1 \). Since \(r < k \), we have \(t < r \). Thus, \(p_0 = \lceil t/2 \rceil \leq (t+1)/2 \leq r/2 < k/2 \), which implies \(p_i \leq k/2 - 1 \) for \(i \in \{0,1\} \). This assures us that there exist \(p_0 \) edge-disjoint \(k \)-cycles in \(G'_0 \) and \(p_1 \) edge-disjoint \(k \)-paths in \(G'_1 \) by Lemmas 2.3 and 2.5, respectively. Suppose that \(Q_{0,0}, Q_{0,1}, \ldots, Q_{0,p_0-1} \) and \(Q_{1,0}, Q_{1,1}, \ldots, Q_{1,p_1-1} \) are edge-disjoint \(k \)-cycles and \(k \)-paths in \(G'_0 \) and \(G'_1 \), respectively. Let \(W'_i = G'_i - E(\bigcup_{h=0}^{p_i-1} Q_{i,h}) \) and \(X_{i,j} = W'_i[\{a_{ik/2+j}\} \cup \{b_0, b_1, \ldots, b_{k-1}\}] \) where \(i = 0,1 \) and \(j = 0,1, \ldots, k/2 - 1 \). Since \(\deg_{G'_i} a_{ik/2+j} = k \) and each \(Q_{i,h} \) uses two edges incident with \(a_{ik/2+j} \) for each \(i \) and \(j \), we have \(\deg_{W'_i} a_{ik/2+j} = k - 2p_i \). Hence \(X_{i,j} \) is a \((k-2p_i)\)-star with center \(a_{ik/2+j} \) for \(i = 0,1 \) and \(j = 0,1, \ldots, k/2 - 1 \).

Next we show the required star-decompositions of \(H' \). Equivalently we need show that there exists an orientation of \(H' \) such that, for \(i = 0,1 \), \(j = 0,1, \ldots, k/2 - 1 \), and \(w = k,k+1, \ldots, k+r-1 \),

\[
\begin{align*}
\deg_{H'}^+ a_{ik/2+j} &= 2p_i \quad (1) \\
\deg_{H'}^+ b_w &= k \quad (2)
\end{align*}
\]

We begin the orientation. For \(j = 0,1, \ldots, k/2 - 1 \) the edges \(a_j b_{k+(2p_0)j}, a_j b_{k+(2p_0)j+1}, \ldots, a_j b_{k+(2p_0)j+2p_0-1} \) and \(a_{k/2+j} b_{(p_0+1)k+(2p_1)j}, a_{k/2+j} b_{(p_0+1)k+(2p_1)j+1}, \ldots, a_{k/2+j} b_{(p_0+1)k+(2p_1)j+2p_1-1} \) are oriented from \(a_{ik/2+j} \) where the subscripts of
Lemma 3.5. Let \(k \) be a positive even integer and let \(n \) be a positive integer with \(6 \leq k \leq n/2 \). If \(n^2 \) is divisible by \(k \), then \(K_{n,n} \) has a \(\{C_k,P_k,S_k\} \)-decomposition.

Proof. Let \(n = qk + r \) where \(q \) and \(r \) are integers with \(0 \leq r < k \). From the assumption of \(k \leq n/2 \), we have \(q \geq 2 \). Note that

\[
K_{n,n} = K_{qk+r,qk+r} = K_{(q-1)k,(q-1)k} \cup K_{k+r,(q-1)k} \cup K_{(q-1)k,k+r} \cup K_{k+r,k+r}.
\]

Trivially, \(|E(K_{(q-1)k,(q-1)k})|, |E(K_{k+r,(q-1)k})| \) and \(|E(K_{(q-1)k,k+r})|\) are multiples of \(k \). Thus \((k + r)^2 \equiv 0 \pmod{k}\) from the assumption that \(n^2 \) is divisible by \(k \). By Proposition 2.6, \(K_{(q-1)k,(q-1)k} \), \(K_{k+r,(q-1)k} \) and \(K_{(q-1)k,k+r} \) have \(S_k \)-decomposition.
The case of \(r = 0 \), by Lemma 3.3, we obtain that \(K_{k,k} \) has a \(\{C_k, P_k, S_k\} \)-decomposition. In addition, by Lemma 3.4, \(K_{k+r,k+r} \) has a \(\{C_k, P_k, S_k\} \)-decomposition for \(0 < r < k \). Hence there exists a \(\{C_k, P_k, S_k\} \)-decomposition of \(K_{n,n} \).

Now Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5 serve to prove the Main Theorem.

References

\{C_k, P_k, S_k\}\text{-decompositions of balanced complete bipartite graphs} \hspace{0.5cm} 321

\textbf{Received: June 3, 2016; Published: July 20, 2016}