Properties of GV-Semigroups

Yu Wang

Department of Mathematics
Anhui University of Science and Technology
Huainan, Anhui 232001, P. R. China

Abstract

A semigroup S is called a GV-semigroup if for every element a of S there exists a positive integer n such that a^n is regular and every regular element of S is completely regular element. Some new properties of GV-semigroups are shown in this paper. Some characters of Greens relations in GV-semigroups are first given. Moreover, idempotents and ideals in GV-semigroups are investigated.

Mathematics Subject Classification: 20M10

Keywords: GV-semigroups; group congruences; Greens relations; ideals.

1 Introduction and preliminaries

A semigroup S is called an eventually regular semigroup if for every $a \in S$ there exists a positive integer n such that a^n is regular. Let us denote by $r(a)$ the least positive integer n such that a^n is regular element of S and call it the regular index of a. If every regular element of an eventually regular semigroup S is completely regular, then S is called a GV-semigroup. From the definition of GV-semigroups, we obtain GV-semigroups are one special case of eventually regular semigroups. Furthermore, we can get GV-semigroups are extentions of completely regular semigroups in eventually regular semigroups. So the strategy to study GV-semigroups is to generalize known results for completely regular semigroups to GV-semigroups. Completely regular semigroups have been explored extensively. Especially, Petrich, M. [7] and Howie,
J.M. [6] generalized many properties of completely regular semigroups which were investigated by some algebraists such as Lajos, S. and Jones, P.R. etc. Bogdanovic, S. [1] generalized the part of the results for completely regular semigroups to GV-semigroups and obtained some results which were even new for completely regular semigroups.

The aim of this paper is to investigate some basic properties of GV-semigroups that have not been shown by anyone else. Firstly, Greens relations in GV-semigroups are studied, we can get some useful results for GV-semigroups. Secondly, we provide some characteristics of ideals and idempotents of GV-semigroups.

We shall use the standard terminology and notation of semigroup theory as in [1, 6, 7].

Let S be an eventually regular semigroup, we will denote by E_S the set of all idempotents of S, by $\langle E_S \rangle$ the subsemigroup of S generated by E_S, by $\text{Reg} S$ the set of all regular elements of S, and by $\text{Gr} S$ the set of all completely regular elements of S. A semigroup S is called a π-group if S is an eventually regular semigroup and S only has an idempotent. An eventually regular semigroup S is called r-semigroup if $\langle ab \rangle^r = a^r(a).b^r(b)$ for all $a, b \in S$. Let S be a semigroup and I be an ideal of S, if $I \neq S$ then I is called a proper ideal of S. We will denote by $I(S)$ the union of all the proper ideals, by $L(S)$ the union of all the left proper ideals, by $R(S)$ the union of all the right proper ideals, and by $I(a)$ the principle ideals of S generated by a. A subsemigroup B of semigroup S is called a bi-ideal of S if $BSB \subseteq B$. A subset Q of a semigroup S is called a quasi-ideal of S if $QS \cap SQ \subseteq Q$.

Lemma 1.1 ([1]) S is a GV-semigroup if and only if S is eventually regular and every H^* class contains an idempotent, i.e. S is the union of π-group.

Lemma 1.2 ([2, 3]) Let S be an eventually regular semigroup and ρ be a congruence on S, ap is an idempotent of S/ρ, then an idempotent e can be found in S such that ape.

Remark. S is an eventually regular semigroup and ρ is a group congruence on S, then $x\rho$ is an idempotent of S/ρ for all $x \in \langle E_S \rangle$.

Lemma 1.3 ([7]) Let S be a semigroup, then every ideal (left ideal, right ideal) of S is a quasi-ideal of S and every quasi-ideal of S is a bi-ideal of S.

2 Greens relations

Let S be an eventually regular semigroup, we define the equivalent relations L^*, R^*, H^*, J^*, D^* on S which generated by Greens relations on regular semigroup.
Properties of GV-semigroups

19

\[aL^*b \Rightarrow a^{r(a)}L^r(b), \quad aR^*b \Leftrightarrow a^{r(a)}R^r(b), \]
\[aH^*b \Leftrightarrow a^{r(a)}H^r(b), \quad aJ^*b \Leftrightarrow a^{r(a)}J^r(b), \quad D^* = L^* \vee R^*. \]

Suppose \(\kappa = \{ L, R, D, H, J \} \), \(\kappa^* = \{ L^*, R^*, D^*, H^*, J^* \} \) be equivalent relations on \(S \). Suppose \(U \subseteq S \) then the subset \(\kappa^*|_U = \{(x, y) \mid x, y \in U, x \kappa^* y \} \) is called the restriction of \(\kappa^* \) to \(U \). \(\kappa^*_U = \{(x, y) \mid x, y \in U, \exists a, v \in U \text{ such that } xa \kappa^* y \} \).

We list some lemmas which will be used in the sequel.

Lemma 2.1 [8] Let \(S \) be an eventually regular semigroup and \(T \) be an eventually regular subsemigroup of \(S \), if \(\kappa \in \{ L, R, H \} \) then \(\kappa^*_T = \kappa^*|_T \) and \(D^* = L^* \cdot R^* = R^* \cdot L^* \).

Lemma 2.2 Let \(S \) be an eventually regular semigroup and \(\kappa \in \{ L, R, H, D, J \} \), then \(\kappa|_{RegS} = \kappa^*|_{RegS} \).

Proof. Suppose \(a, b \in RegS \), i.e. \(r(a) = r(b) = 1 \) and \(aDb \). we have \(aD^*b \) immediately, hence \(D \subseteq D^* \). Conversely, let \(aD^*b \), \(a, b \in RegS \), that is, \(a = a^{r(a)}D^r(b) = b \), i.e. \(aDb \), hence \(D^* \subseteq D \) and so \(D|_{RegS} = D^*|_{RegS} \).

The remainder of the claim follows by the same way.

Remark. \(S \) is an eventually regular semigroup and \(\kappa = \{ L, R, H, D, J \} \), then \(\kappa \subseteq \kappa^* \) is not true in any condition.

Lemma 2.3 [6, 7] Let \(S \) be a completely simple semigroup, then \(ab \in R_a \cap L_b \) for all \(a, b \in S \) and \(\kappa = \{ L, R, H, D \} \) is a congruence on \(S \).

Lemma 2.4 Let \(S \) be a \(\pi \)-group, then \(RegS = G_e \). (\(e \) is the only idempotent of \(S \), \(G_e \) is the maximum group generated by \(e \).)

Lemma 2.5 Let \(S \) be a GV-semigroup, then there exists \(a' \in V(a) \) for any \(a \in Reg(S) \) such that \(aa' = a'a, aa'a = a \).

Proposition 2.6 Let \(S \) be a GV-semigroup and \(T \) be an eventually regular subsemigroup of \(S \), then \(T \) is a GV-semigroup.

Proof. Suppose \(a \in T \) and \(T \) is an eventually regular subsemigroup of \(S \), then there exists \(m = r(a) \) such that \(a^m \in RegT \). Hence \(a^{2m} \in RegT \) and so there exists \(y \in T \) such that \(a^{2m}ya^{2m} = a^{2m} \). We put \(x = ya^{2m}y \in T \), whence \(x \) is a inverse of \(a^{2m} \) and \(a^mxa^m \cdot a^mxa^m = a^mxa^{2m}xa^m = a^mxa^m \), that is, \(a^mxa^m \in E_S \). Notice that \(a^mxa^m \in T \), we have \(a^mxa^m \in E_T \). By the completely regularity of \(a^m \) and lemma2.5, we put \((a^m)^{-1} \in V(a^m) \) and \(a^m(a^m)^{-1} = (a^m)^{-1}a^m \), hence \((a^mxa^m) \cdot a^m = a^m \cdot (a^m)^{-1}a^m \cdot xa^m = (a^m)^{-1}a^m \cdot a^m \cdot xa^m = a^m = (a^m)^{-1}a^mxa^m \cdot a^m = (a^m)^{-1}a^mxa^m = (a^m)^{-1}a^mxa^m = a^m \) and so \(a^m(xa^m) = a^mxa^m \), that is, \(a^mRa^mxa^m \). A similar argument will show that \(a^mL^*a^m \).
Consequently, \(a^mH_{a^m}xa^m\). By the lemma2.2, we have \(aH^*a^mH^*a^mxa^m, a \in T, a^mxa^m \in T\). And by lemma2.1, we know \(H^*_T = HS_S|_T = H^*_S \cap (T \times T)\), hence \(aH^*_Ta^mxa^m\), that is, every \(H^*\) class contains an idempotent and so \(T\) is a GV-semigroup by the lemma1.1.

Clearly, \((E_S)\) is an eventually regular subsemigroup of \(S\). By proposition2.6, we get the result immediately.

Corollary 2.7 Let \(S\) be a GV-semigroup, then \((E_S)\) is a GV-semigroup.

Proposition 2.8 Let \(S\) be a GV-semigroup, then \(D^* = J^*, D = J\).

Proof. Firstly, we show \(D^* = J^*\). Suppose \(aJ^*b\), then we have \(a, b\) lie in the same completely archimedean semigroup \(S_\alpha(\alpha \in LL\) is a semilattice). As \(S_\alpha\) is a completely archimedean semigroup, we obtain \(\text{Reg}_S(\alpha)\) is a completely simple semigroup \(S^*\). Hence \(a^mD^*b, r(a) = m, r(b) = n\). By lemma2.2, we know \(a^mD^*b^m\), that is, \(aD^*a^mD^*bD^*b\), i.e. \(aD^*b\). Thus, \(J^* \subseteq D^*\). Conversely, let \(aD^*b\), that is, \(a^mD^*b^m, r(a) = m, r(b) = n\). Hence \(a^mJ^*b\), i.e. \(aJ^*b\) and so \(D^* \subseteq J^*\). Therefore \(D^* = J^*\), as required.

Finally, to show \(D = J\). we first show \(J \subseteq D\). Suppose \(aJb, a, b \in S\), then there exist \(x, y, u, v \in S\) such that \(a = xyb, b = uav\). Notice that \(a = xby = x(uav)y = \ldots = (ux)^t(a(vy)^t\). Dually, \(b = (ux)^tb(vy)^t\). We put \(t = \max\{r(xu), r(ux), r(vy), r(vy)\}\) and since \(S\) is the union of \(\pi\)-group. we get \((ux)^t \in G_a, (ux)^t \in G_g, (vy)^t \in G_h, (vy)^t \in G_h, e, f, g, h \in E_S\). Whence \(ea = a, gb = b = bh\). For \(exb(y) = exby = ea = a; a.\{(vy)^t-1, v[(vy)^t-1]\} = exby.(vy)^t-1v[(vy)^t-1] = exby[(vy)^t-1] = exbh = exb[(vy)^t-1] \subseteq G_b\), thus \(aLExb\). Next to prove \(bLExb\). As \((ex)b = exb, \{(ux)^t+1-1, u(xu)^t\}.exb = [(ux)^t+1-1, u(xu)^txb = [(ux)]^t+1, (ux)^t+1, b = gb = b, [(ux)]^t+1 \subseteq G_g\), thus \(bLExb\). Hence \(aLExbLb\), that is, \(aL.Rb\), i.e. \(aDb\) and so \(J \subseteq D\). Clearly, \(D \subseteq J\) therefore, \(D = J\).

Corollary 2.9 Let \(S\) be a completely archimedean semigroup, then \(D^* = J^*, D = J\); Let \(S\) be an eventually regular semigroup, then \(D^* \subseteq J^*\); Let \(S\) be a simple GV-semigroup, then \(S\) is completely regular semigroup.

Proposition 2.10 Let \(S\) be a GV-semigroup and \(T\) be an eventually regular subsemigroup of \(S\), then \(D^*_T = D^*_S|_T\).

Proof. Firstly, \(D^*_T \subseteq D^*_S|_T\), clearly. On the other hand, Suppose \(aD^*_S|_Tb\), that is, \(aD^*b\) for \(a, b \in T\). Since \(S\) is a GV-semigroup and by proposition2.8, we have \(D^* = J^*, i.e. aJ^*b\). Hence \(a, b\) lie in the same completely archimedean semigroup \(S_\alpha(\alpha \in LL\) is a semilattice). Put \(r(a) = m, r(b) = n\), then \(a^m, b^n\) lie in the completely simple semigroup \(S^\ast\) in \(S_\alpha\). By lemma2.3, we know \(a^m b^n \in R_{a^m} \cap L_{b^n}\), so \(a^m R a^m b^n\) and \(S^\ast\) is a regular semigroup. By lemma2.2,
we get \(a^mR^*a^m b^n\), i.e. \(aR^*a^m b^n\). Dually, we obtain \(bL^*a^m b^n\), \(a, b, a^m b^n \in T\). By lemma 2.1, we have \(aR^*a^m b^n L^* b\), that is, \(aD_T b\). Hence \(D^*_T \supseteq D_S | T\) and so \(D^*_T = D_S | r\).

Proposition 2.11 Let \(S\) be a completely archimedean r-semigroup, then \(L^*, R^*, H^*, D^*\) are congruences on \(S\).

Proof. Firstly, we show \(H^*\) is a congruence on \(S\). Let \(aH^*b, \forall c \in S\). As \(S\) is the nil-extension of completely simple semigroup \(S^*\), we have \(a^m, b^n, c^t \in \text{Reg}\(S = S^*\), \(r(a) = m, r(b) = n, r(c) = t\). By lemma 2.2 and \(aH^*b\), i.e. \(a^mHb^n\), hence \(a^mH^*b^n\). For \(c^t, a^m, b^n \in \text{Reg}\(S = S^*\), we have \(a^m c^t Hb^n c^t\) by lemma 2.3. And since \(S\) is r-semigroup, whence \((ac)^{r(ac)} = a^{c(a) c^t(c)} = a^m c^t Hb^n c^t = b^n(b^t c^t(c)) = (bc)^{r(bc)}\), that is, \(acH^*bc\). Thus \(H^*\) is right compatible. Dually, \(H^*\) is left compatible. Clearly, \(H^*\) is an equivalence on \(S\). Consequently, \(H^*\) is a congruence on \(S\).

Finally, the remainder of the results can be proved by the same technique.

3 Ideals and idempotents

Theorem 3.1 Let \(S\) be an eventually regular semigroup, then the following conditions are equivalent:

1. \(S\) is a GV-semigroup;
2. every principle ideal of \(S\) is a GV-semigroup;
3. every ideal of \(S\) is a GV-semigroup;
4. every left(right) ideal of \(S\) is a GV-semigroup;
5. every bi-ideal of \(S\) is a GV-semigroup;
6. every quasi-ideal of \(S\) is a GV-semigroup.

Proof. (1) \(\iff\) (2) Firstly, we show (1) \(\Rightarrow\) (2). Let \(S\) be a GV-semigroup and \(I\) be any ideal of \(S\). We can obtain \(I\) is a subsemigroup of \(S\), immediately. For \(S\) is an eventually regular semigroup, we have there exists \(m \in N\) such that \(a^m \in \text{Reg}\(S\) for any \(a \in I\). Notice that \(a^m = a^{m-2}aa \subseteq SIS \subseteq I, (m > 2), m \leq 2, a^m \in I\) clearly, hence \(I\) is an eventually regular subsemigroup. Suppose \(\forall a \in \text{Reg}\(I \subseteq \text{Reg}\(S), then exists \(x \in S\) such that \(axa = a, ax = xa\). we put \(t = xax \in SIS \subseteq I\), then we know \(t \in V(a), ata = a, at = ta\), that is, \(a \in \text{Gr}\(I\). Therefore \(I\) is a GV-semigroup. Clearly, every principle ideal of \(S\) is also a GV-semigroup. Next, we show (2) \(\Rightarrow\) (1). For \(\forall a \in \text{Reg}\(S\), we have \(a \in \text{I}(a)\) and let \(I(a)\) be a GV-semigroup. So there exists \(x \in I(a) \subseteq S\) such that \(axa = a, ax = xa\), i.e. \(a \in \text{Gr}\(S\). Thus \(S\) is a GV-semigroup.

(2) \(\Rightarrow\) (3) By (1) \(\iff\) (2), we have (2) \(\Rightarrow\) (3), that is (1) \(\Rightarrow\) (3). From the proof of (1) \(\Rightarrow\) (2), we can get (1) \(\Rightarrow\) (3) immediately, hence (2) \(\Rightarrow\) (3).
(3) \Rightarrow (4) As S is an ideal of S itself. By (3), we get S is a GV-semigroup. Suppose L is any left ideal of S, we have L is a subsemigroup of S, immediately. For S is an eventually regular semigroup, we have there exists $m \in N$ such that $a^m \in \text{Reg}S$ for any $a \in I$. Notice that $a^m = a^{m-1}.a \subseteq SL \subseteq L(m > 1)$, $m = 1, a^m \in I$, clearly. Suppose $\forall a \in \text{Reg}L \subseteq \text{Reg}S = \text{Gr}S$. By lemma 2.5, we get there exists $x \in V(a)$ such that $axa = a, ax = xa$. Hence $x = xax = xxa \in SL \subseteq L$ and so L is a GV-semigroup. By the same way, any right ideal of S is also a GV-semigroup.

(4) \Rightarrow (5) Firstly, since S is a left ideal of S itself, by (4) we know S is a GV-semigroup. Let B be any bi-ideal of S, we get B is a subsemigroup of S from its definition. For S is a GV-semigroup, we have there exists $m \in N$ such that $a^m \in \text{Reg}S$ for any $a \in B, a^m \in B$, and there exist $x \in V(a^m)$ such that $a^mxa^m = a^m, xa^m = a^m x, xam x = x$ by lemma 2.5. Notice that $x = xam x = xam x = a^n xxxa^m \in BSB \subseteq B$ and so B is a GV-semigroup.

(5) \Rightarrow (6) By lemma 1.3, we can prove it immediately.

(6) \Rightarrow (1) Notice that $S.S \cap S.S \subseteq S$, so S is a quasi-ideal of S itself. By (6), we have S is a GV-semigroup.

Remark This theorem means that the completely regularity of a GV-semigroup S is a hereditary property concerning the all kinds of ideals of S.

Proposition 3.2 Let any proper ideal (proper left ideal, proper right ideal) of S be a GV-semigroup if and only if $I(S) (L(S), R(S))$ is a GV-semigroup.

Proof. To prove necessity, suppose any proper ideal I of S is a GV-semigroup. Let $\forall a, b \in I(S), a \in I$, hence $ab \in IS \subseteq I \subseteq I(S)$ and so $I(S)$ is a subsemigroup of S. For any $a \in I(S), a \in I$, then there exists $m \in N$ and $x \in I \subseteq I(S)$ such that $a^mxa^m = a^m$. Hence $I(S)$ is an eventually regular semigroup. Let $\forall a \in \text{Reg}(I(S), a \in I)$, then there exists $a' \in V(a)$ such that $aa'a = a, aa' = a'a$ by lemma 2.5. Hence $a' = a'aa' \in SIS \subseteq I \subseteq I(S)$ and so $I(S)$ is a GV-semigroup.

We now prove sufficiency. Put I as any proper ideal of S. Then we know I is a subsemigroup of S immediately. For $\forall a \in I \subseteq I(S)$, there exists $m \in N$ such that $a^m \in \text{Reg}(I(S))$. By lemma 2.5, notice that $a^m \in I, x = xam x \in SIS \subseteq I$, we get I is a GV-semigroup.

The condition of proper left(right) ideal can be proved as the same way.

Proposition 3.3 Let S be a GV-semigroup and $r(ab) = m, r(ba) = n$, if $(ab)^m \in E_S$ and $m \geq n$ then $(ba)^m \in E_S$.

Proof. Since S is a GV-semigroup and $m \geq n$, then we can get $(ba)^m \in G_{(ba)^m}((ba)^m)^{-1}$ and put $(ba)^m .[(ba)^m]^{-1} = (ba)^n .[(ba)^n]^{-1} = e, [(ba)^m]^{-1} \in V[(ba)^m] \subseteq G_e, [(ba)^n]^{-1} \in V[(ba)^n] \subseteq G_e$. Notice $(ba)^m = (ba)^m .(ba)^m .[(ba)^m]^{-1} = b.(ab)^m .a.(ab)^m .[(ba)^m]^{-1} = b(ab)^m a(ba)^m .[(ba)^m]^{-1} = b(ab)^2m a(ba)^m .[(ba)^m]^{-1} = (ba)^2m .e = (ba)^{2m}$, that is, $(ba)^m \in E_S$.
Theorem 3.4 Let S be a GV-semigroup and ρ be a congruence on S, $\forall e, f \in E_S$. Then $eSf, eS, Sf, e\rho$ are all GV-semigroups.

Proof. We get eSf is a subsemigroup of S, immediately. $\forall a \in eSf$, then there exists $m \in N$ such that $a^m \in RegS = GrS, a^m \in eSf$. By lemma 2.5, we know there exists $x \in V(a^m)$ such that $a^m xa^m = a^m, a^m x = xa^m, xa^mx = x$ and there exists $b \in S$ such that $a^m = ebf$. Notice that $x = xa^mx = a^m xx = ebfxxa^m = xebfxxa^m = ebfxxebf$, i.e. $x \in eSf$. That is, eSf is a GV-semigroup.

By the same technique, we obtain eS, Sf are both GV-semigroups.

Finally, we show $e\rho(\forall e \in E_S)$ is a GV-semigroup. Suppose $\forall a, b \in e\rho$, then $abpeee = e$, that is, $e\rho$ is a subsemigroup of S. There exists $m \in N$ such that $a^m \in RegS, a^m \in e\rho$ for any $a \in e\rho$. By lemma 2.5, we have there exists $x \in V(a^m)$ such that $a^m xa^m = a^m, a^m x = xa^m, xa^mx = x$ and $a^m \rho e \rho(a^m)^3$. Notice that $x = xa^mx = (x^2a^m)^2(a^m)^3 = x, xa^m a^m = xa^m xa^m a^m = xa^m xa^m = a^m, i.e. xpa^m \rho e$. Consequently, $e\rho$ is a GV-semigroup.

Acknowledgements. This research was supported by the the Natural Science Foundation of Anhui (No.1308085QA12).

References

Received: August 30, 2015; Published: December 3, 2015