A Remark on Pullback Attractors
for the 2D Navier-Stokes Equations with
Weak Damping, Distributed and Continuous Delay

Yadi Wang† & Keqin Su∗ and Mengmeng Si‡

†,‡College of Mathematics and Information Science
†,‡Henan Normal University, Xinxiang, 453007, P. R. China
∗College of Information and Management Science
∗Henan Agricultural University, Zhengzhou, 450046, P. R. China

Corresponding author: Yadi Wang

Copyright © 2015 Yadi Wang, Keqin Su and Mengmeng Si. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
We shall show some results for the existence of pullback attractors of 2D Navier-Stokes equation with weak damping, distributed and continuous delay.

Mathematics Subject Classification: 35Q35; 76D03

Keywords: Navier-Stokes equation with weak damping, continuous delay, distributed delay, pullback attractors

1 Introduction

In this paper, we investigate the existence of pullback attractors for the 2D Navier-Stokes equations with weak damping, continuous and distributed delay:

\[
\begin{aligned}
&u_t - \nu \Delta u + (u \cdot \nabla)u + \alpha u + \nabla p = f(t - \rho(t), u(t - \rho(t))) \\
&\quad + \int_{-h}^{0} G(t, s, u(t + s))ds,
\end{aligned}
\]

\[
\begin{aligned}
div u = 0, &\quad (x, t) \in \Omega_{\tau}, \\
u = 0, &\quad (x, t) \in \partial \Omega_{\tau}, \\
u(\tau, x) = u_0(x), &\quad x \in \Omega, \\
u(t, x) = \phi(t, x), &\quad (x, t) \in \Omega_{\tau h},
\end{aligned}
\]
where $\Omega \subset \mathbb{R}^2$ is a bounded domain with smooth boundary $\partial \Omega$, $\Omega_t = \Omega \times (\tau, +\infty)$, $\Omega_{\tau h} = \Omega \times (\tau - h, \tau)$, $\tau \in \mathbb{R}$ is the initial time, ν is the kinematic viscosity of the fluid, $u = u(t, x) = (u_1(t, x), u_2(t, x))$ is the velocity vector field which is unknown, p is the pressure, $\alpha > 0$ is positive constant, αu is the weak damping, $f(t - \rho(t), u(t - \rho(t)))$ is the external force term which contains memory effects during a fixed interval of time of length $h > 0$, $\rho(t)$ is an adequate given delay function, ϕ is the initial state of delay in $[\tau - h, \tau]$, $h > 0$ is a constant.

This paper will be organized as follows: in section 2, we shall give some preliminaries; in section 3, the existence and uniqueness of global weak and strong solutions will be derived; we shall prove the existence of pullback absorbing ball in section 4, the pullback attractors will be concluded in last section.

2 Preliminaries

Throughout this paper, C will stand for a generic positive constant, depending on Ω and some constants, but independent of the choice of the initial time τ and t. We introduce the Hausdorff semidistance in X from one set B_1 to another set B_2, i.e.,

$$\text{dist}_X(B_1, B_2) = \sup_{b_1 \in B_1} \inf_{b_2 \in B_2} \|b_1 - b_2\|_X.$$

We set $E := \{u|u \in (C_0^\infty(\Omega))^2, \text{div}u = 0\}$, H is the closure of the set E in $(L^2(\Omega))^2$ topology, W is the closure of the set E in $(H^2(\Omega))^2$ topology, i.e.,

$$W = \{u \in W||u||_W = ||u||_{H^2}, u|_{\partial \Omega} = 0\}. \quad (2)$$

For each $t \in (\tau, T)$ with $T > \tau$, we define $u : (\tau - h, T) \rightarrow (L^2(\Omega))^2$, here u_t is a function in $(-h, 0)$ defined by $u_t = u(t + s), s \in (-h, 0)$.

In the following section, we denote $C_H = C^0([-h, 0]; H)$ and $C_V = C^0([-h, 0]; V)$ as two Banach spaces equipped the norms

$$\|u\|_{C_H} = \sup_{\theta \in [-h, 0]} |u(t + \theta)| \quad (3)$$

and

$$\|u\|_{C_V} = \sup_{\theta \in [-h, 0]} \|u(t + \theta)\| \quad (4)$$

respectively, $L^2_H = L^2(-h, 0; H)$, $L^2_V = L^2(-h, 0; V)$.

Assume $\nu_0 \in H, \eta \in L^2_H$, then the problems (1) can be written as an abstract form

$$\frac{du}{dt} + \nu Au + \alpha u + B(u) = f(t - \rho(t), u(t - \rho(t))) + g(t, u_t), \quad (5)$$

$$u(\tau) = u_0, u(t) = \phi(t), t \in (\tau - h, \tau). \quad (6)$$
where \(g(t, u_t) = \int_{-h}^{0} G(t, s, u(t + s))ds, \) \(g(t, 0) = 0. \) In (1), the functions \(f : [-h, \infty) \times H \to H, \) \(g : [-h, 0] \times H \to H \) and \(\phi : [-h, 0] \to H \) are continuous which satisfy

(a) \(\rho : [0, \infty) \to [0, h], |\frac{d\rho}{dt}| \leq M < 1; \)

(b) there exist constants \(m_0(s), m_1(s) \) such that \(|G(t, s, u)| \leq m_0(s) + m_1(s) |u| \). Denote \(m_i = \int_{-h}^{0} m_i(s)ds, \) \(i = 1, 2. \)

(d) there exist constants \(a > 0, b > 0 \) such that \(|f(t, u)|^2 \leq a|u|^2 + b; \)

(e) \((\nu \lambda_1)^2 > \frac{ae}{1-M} + \frac{1}{h}, \) \(\frac{ae}{(1-M)\nu \lambda_1} > 2\nu \lambda_1, \) where \(\lambda_1 \) is the first eigenvalue of \(A \) under the homogeneous Dirichlet boundary condition;

(f) from the assumption (d) (i.e., \((\nu \lambda_1)^2 > \frac{ae}{1-M} + \frac{1}{h}, \) \(\frac{ae}{(1-M)\nu \lambda_1} > 2\nu \lambda_1, \) we have \(-\nu \lambda_1 + \frac{ae}{(1-M)\nu \lambda_1} < 0, \) so there exists \(\theta > 0, \) such that \(\theta - \nu \lambda_1 + \frac{ae}{(1-M)\nu \lambda_1} < 0. \) Noting \(\alpha > 0, \) we can deduce

\[
\theta - \nu \lambda_1 - 2\alpha + \frac{ae}{(1-M)\nu \lambda_1} < 0;
\]

(g) let \(p(\theta) = 2m_1 e^{\theta h} - \theta, \) it can be easily obtained \(p(0) > 0, \) \(p(\frac{1}{h}) = 2m_1 e - \frac{1}{h} < 0, \) hence, there exist \(\theta_1, \theta_2 > 0, \) when \(\theta_1 < \theta < \theta_2, \) such that \(p(\theta) < 0, \) i.e.,

\[
2m_1 e^{\theta h} < \theta;
\]

(h) from (c), there exist positive numbers \(L(\beta), L(\gamma) \) such that

\[
|f(t, u) - f(t, v)| \leq L(\beta) |u - v|, \quad |g(t, u) - g(t, v)| \leq L(\gamma) |u - v|.
\]

Moreover, there exist a constant \(C > 0, \) such that

\[
\int_{0}^{t} |g(s, u_s) - g(s, v_s)|^2ds \leq C \int_{-h}^{t} |u(r) - v(r)|^2dr.
\]

Here

\[
\int_{0}^{t} |g(s, u_s) - g(s, v_s)|^2ds \\
\leq L^2(\gamma) \int_{0}^{t} |u(s + \tau) - v(s + \tau)|^2ds \\
\leq L^2(\gamma) \int_{0}^{t} (\int_{-h}^{0} |u(s + \tau) - v(s + \tau)|^2ds)d\tau \\
\leq L^2(\gamma) \int_{-h}^{0} (\int_{-h}^{t} |u(s + \tau) - v(s + \tau)|^2d\tau)ds \\
\leq L^2(\gamma) \int_{-h}^{0} (\int_{s}^{t+s} |u(r) - v(r)|^2dr)ds \\
\leq C \int_{-h}^{t} |u(r) - v(r)|^2dr,
\]

where \(C = hL^2(\gamma). \)
3 Existence of Global Solutions

The existence of weak global solutions for (1) can be derived by similar methods as in [4]:

Theorem 3.1 Let \(u_0 \in H, \phi \in L^2_H \) and the assumption \(f = f(t, u(t - \rho(t))) \) hold, then there exists a unique global weak solution of (1) that satisfies

\[
 u \in L^\infty(0, T; H) \bigcap L^2(0, T; V).
\]

Proof.

Step 1. Assume the orthogonal base in \(H \) of \(A \) is \(w_j \) such that \(Aw_j = \lambda_j w_j \), holds for \(j = 1, 2, \cdots, W_m = \text{span}\{w_1, w_2, \cdots, w_m\} \) is the subspace of \(H \). Constructing the approximation solution \(u_m(t) = \sum_{k=1}^{m} u_{mk}(t)w_k \) \((k = 1, 2, \cdots, m)\) of problem (1), where \(u_{mk}(t) \) is to be determined.

Step 2. We shall prove \(\frac{du_m}{dt} \) is uniformly bounded in \(L^2(0, T; V') \).

Step 3. We shall prove the uniqueness of global solution (see [4]).

The theorem 3.1 proves that for \(u_0 \in H, \phi \in L^2_H \), the problem (1) exists uniqueness solution \(u(\cdot; \tau, (u_0, \phi)) \), We can define the semi-processes for non-autonomous system \(\{U(t, \tau)\phi : C_H \to C_H\} \), which satisfies

\[
 U(t, \tau)\phi = u_t(\cdot; \tau, (\phi(0), \phi)), \forall \phi \in C_H, t \geq \tau,
\]

\[
 U(t, \tau)\phi = I_d.
\]

Theorem 3.2 Let \(u_0 \in V, \phi \in L^2_V \), the assumption \(f = f(t, u(t - \rho(t))) \) holds, then there exists a unique global strong solution of (1), which satisfies

\[
 u \in L^\infty(0, T; V) \bigcap L^2(0, T; D(A)).
\]

Proof. see, e.g. [4].

Theorem 3.3 Assume that the assumption \(f = f(t, u(t - \rho(t))) \) holds, \(u_0 \in H, \phi \in L^2_H \), the semi-processes \(\{U_f(t, \tau)|t \geq \tau\} \) defined by (7) is continuous for arbitrary \(t \geq \tau \).

Proof. see, e.g. [4].

4 Existence of Pullback Attractors in \(H \)

The uniqueness of the solution in Theorem 3.2 proves that the operator \(U(t, \tau)\phi \) is semi-processes.
However, we choose the skew-product flow in the space $H \times L^2_H = M^2_H$, and define a family of mappings $\tilde{U}(\cdot, \cdot) : M^2_H \to L^2_H$, as follows,

$$
\tilde{U}(t, \tau)(u_0, \phi) = u_t(\cdot; \tau, (u_0, \phi)), \ \forall (u_0, \phi) \in M^2_H, \ t \geq \tau,
$$

(8)

obviously,

$$
\tilde{U}(t, \tau)\phi = \tilde{U}(t, \tau)(\phi(0), \phi), \ t \geq \tau, \ \phi \in C_H.
$$

(9)

For arbitrary $(u_0, \phi) \in M^2_H$, the corresponding norm can be described as

$$
\|(u_0, \eta)\|_{M^2_H}^2 = |u_0|^2 + \int_{-h}^{0} |\phi(s)|^2 ds.
$$

(10)

Lemma 4.1 Assume that $\{B(t)\}_{t \in \mathbb{R}}$ are a bounded sets in C_H, then the mapping $\tilde{U}(\cdot, \cdot)$ is attracting in C_H, such that $\{B(t)\}_{t \in \mathbb{R}}$ for the the semi-processes $\{U(\cdot, \cdot)\}$ is also attracting in C_H.

Theorem 4.2 Assume that the assumption $f = f(t, u(t - \rho(t)))$ holds, $u_0 \in H, \phi \in L^2_H$, the semi-processes $\{U(t, \tau)\}$ possesses a bounded pullback absorbing set B_0 in C_H.

Proof. see, e.g. [4].

Theorem 4.3 Assume that the assumptions in Theorem 4.1 hold, there exists a bounded pullback attracting set for the semi-processes $\{U(\cdot, \cdot)\}$ in C_V.

The main results in our paper can be stated as

Theorem 4.4 Assume that the assumption $f = f(t, u(t - \rho(t)))$ holds, $u_0 \in H, \phi \in L^2_H$, there exists a pullback attractor A of the problem (1) for the semi-processes $\{U_f(t, \tau)\} t \geq \tau$.

Proof. The Theorem 4.1 and 4.2 guarantee that there exists a bounded attracting set of the problem (1) in C_H and C_V respectively. If we can prove u_t is compact in C_H, then the problem (1) possesses a pullback attractor, this is equivalent to prove the next two properties by the generalized Arzelà-Ascoli theorem:

(1) The embedding $V \subset\subset H$ is compact.
(2) $\{U(t, \tau)\}$ is equi-continuous.

From the fundamental theory of existence of pullback attractor, the problem (1) has a pullback attractor in H. □

ACKNOWLEDGEMENTS. We shall sincerely thanks to the reviewers and their suggestions.
References

Received: May 23, 2015; Published: August 1, 2015