On the Limit Cycles for Liénard Equation

Osuna Osvaldo, Rodríguez Joel, Villaseñor Gabriel
and Villavicencio Geiser

Instituto de Física y Matemáticas, Universidad Michoacana
Edif. C-3, Cd. Universitaria
C.P. 58040. Morelia, Mich., México

Instituto Tecnológico de Morelia
Departamento de Ciencias Básicas, Edif. AD
Morelia Michoacán, México

Depto. de Ciencias Ambientales, UAM-Lerma
Av. Hidalgo Pte. No. 46, col. La Estación
Lerma de Villada, Edo. de México, México

Copyright © 2015 Osuna Osvaldo et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this work, we present some new criteria on the non-existence and uniqueness of limit cycles for the Liénard equation.

Mathematics Subject Classification: 34C05, 34C25

Keywords: Dulac functions, limit cycles, Liénard equation

1 Introduction

We consider the Liénard equation given by

\[
\begin{cases}
\dot{x}_1 = x_2, \\
\dot{x}_2 = -g(x_1) - f(x_1)x_2,
\end{cases}
\]
It is well-known the relevance of the Liénard equation in the qualitative theory of differential equations, which models several oscillatory phenomena. We are concerning on the non-existence and the uniqueness of limit cycles, for this we use of the extended Bendixson-Dulac criterion (see [1] and [2]).

Given an open set $\Omega \subset \mathbb{R}^2$ we consider

$$\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2), \\
\dot{x}_2 &= f_2(x_1, x_2), \quad (x_1, x_2) \in \Omega,
\end{align*}$$

(2)

where f_1, f_2 are C^1-functions on Ω, the associated vector field is $F(x_1, x_2) = (f_1(x_1, x_2), f_2(x_1, x_2))$. As usual its divergence is $\text{div}(F) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$.

We consider the sets

$$\mathcal{F}^\pm_\Omega := \{f \in C^0(\Omega, \mathbb{R}^\pm \cup \{0\}) : \text{vanishes only on a measure zero set}\},$$

and $\mathcal{F}_\Omega := \mathcal{F}^-_\Omega \cup \mathcal{F}^+_\Omega$, along the paper we will use the Lebesgue measure.

Recall that an open subset $\Omega \subset \mathbb{R}^2$ intuitively is said to be l-connected if it has l-holes, i.e., if its first fundamental group is a free group with l-generators, we denote $l(\Omega) = l$.

For $h : \Omega \to \mathbb{R}$ a continuous function, let $Z(h) := \{x \in \Omega : h(x) = 0\}$ be the set of zeros of h.

Following ([2]) we denote by $l(\Omega, h)$ the sum of the quantities $l(U)$ over all the connected components U of $\Omega \setminus Z(h)$, also denote by $\text{co}(h)$ the numbers of closed ovals of $Z(h)$ contained in Ω.

Our results are established with the help of the techniques developed in [4], let us recall the following result

Proposition 1.1 ([4], prop. 2) Let $\Omega \subset \mathbb{R}^2$ be an open set with regular boundary. Suppose that there is $s \in \mathbb{R}$ and a function $c : \Omega \to \mathbb{R}$ such that

$$\langle \nabla h, F \rangle + sh\text{div}(F) = ch,$$

(3)

admits an analytic solution h, with ch does not change sign and vanishes only on a null measure subset, then h is a Dulac function. Therefore the limit cycles of system (2) are either totally contained in $Z(h)$, or do not intersect $Z(h)$. Moreover, the number of limit cycles contained in $Z(h)$ is at most $\text{co}(h)$ and the number N of limit cycles that do not intersect $Z(h)$ satisfies

$$N \leq \begin{cases}
 l(\Omega) & \text{if } s > 0, \\
 0 & \text{if } s = 0, \\
 l(\Omega, h) & \text{if } s < 0.
\end{cases}$$

(4)
2 Results and applications

Our first result gives a criterion for the non existence of limit cycles for (1)

Proposition 2.1 If there are c_1, c_2 constants, such that $c_1 g(x_1) + c_2 f(x_1) \in \mathcal{F}_{\mathbb{R}^2}$, then the Liénard system has not periodic orbits.

Proof: Seeking for a function of Dulac $h = h(z)$, depending only on $z = z(x_1, x_2)$, the associated equation (3) becomes

$$
\left[x_2 \frac{\partial z}{\partial x_1} + (-g(x_1) - f(x_1)x_2) \frac{\partial z}{\partial x_2} \right] \frac{d\ln h}{dz} = c + sf(x_1),
$$

taking z such that $\frac{\partial z}{\partial x_1} - f(x_1) \frac{\partial z}{\partial x_2} = 0$; hence we obtain $z = \int x_1 f(s)ds + x_2$ and

$$
\frac{d\ln h}{dz} = \frac{c + sf(x_1)}{-g(x_1)},
$$

(5)

where the right side depends on z, denoted this by $\phi(z)$; so taking

$$
c = c_1 f(x_1) + c_2 g(x_1) \text{ and } s = -c_1,
$$

then $\phi(z) = -c_2$ and the equation (5) is written as $\frac{d\ln h}{dz} = -c_2$, whose solution is

$$
h(x_1, x_2) = e^{c_2} = \exp[c_2(\int x_1 f(s)ds + x_2)].
$$

Note that $Z(h) = \emptyset$ contains no ovals. In particular, $co(h) = 0$.

Since $l(\mathbb{R}^2, h) = l(\mathbb{R}^2) = 0$, then by Proposition 1.1, the equation (1) has no limit cycles, so the result follows. \qed

Corollary 2.2 If any of the following conditions holds

1. $g(x_1)$ or $f(x_1)$ belong to $\mathcal{F}_{\mathbb{R}^2}$,

2. $kf(x_1) > g(x_1)$, for some k constant,

then the Liénard system has not periodic orbits.

Remark: The condition 1 is a slight generalization of Criterion 1, (C1) in [3].

Theorem 2.3 Assume g polynomial. If for some $a \in \mathbb{R}$ is satisfied that $f(x_1)(G(x_1) + a) \in \mathcal{F}_{\mathbb{R}^2}$ where $G(x_1) = \int_0^{x_1} g(s)ds$, then the Liénard equation has at most one limit cycle.
If $g(x_1) = x_1$, and there exists $\delta > 0$ such that $f(x_1) < 0$ for $x_1 \in (-\delta, \delta)$, $f(x_1) > 0$ in $(-\infty, -\delta) \cup (\delta, +\infty)$ also $\int_{x_1}^{\pm\infty} f(s) ds = \pm \infty$, then system (1) has at most one limit cycle.

Proof: Indeed, taking $G(x_1) = \int_{x_1}^{x_1} g(s) ds = \frac{x_1^2}{2}$ and $a = -\frac{x_1^2}{2}$, the hypotheses of Theorem 2.3 are fulfilled, therefore (1) has at most one limit cycle.

Proposition 2.5 If there is $m \in \mathbb{R}$ such that $f(x_1)(2F(x_1) + m) - g(x_1) \in \mathcal{F}_{\mathbb{R}^2}$ with $F(x_1) = \int_{x_1}^{x_1} f(s) ds$, then the Liénard equation has not limit cycles.

Proof: Consider the equation (6) and taking z such that $\frac{\partial z}{\partial x_1} - f(x_1) \frac{\partial z}{\partial x_2} = f(x_1)$; hence we get $z = x_2 + 2\int_{x_1}^{x_1} f(s) ds + a$ for some constant a and (6) becomes

$$\frac{d \ln h}{dz} = \frac{c + sf(x_1)}{|x_2 f(x_1) - g(x_1)|},$$

where the right side depends on z, denoted this by η, thus $c = -\eta(z) (f(x_1)x_2^2 - sf(x_1))$, we choose $s = -2$ and $\eta(z) = \frac{1}{z}$; simplifying we have $c = -f(x_1)\frac{2}{z} \int_{x_1}^{x_1} g(s) ds + a$, taking c in this way, the equation (7) is written as $\frac{d \ln h}{dz} = \frac{d \ln z}{dz}$ whose solution is

$$h(x_1, x_2) = z = \frac{x_2^2}{2} + \int_{x_1}^{x_1} g(s) ds + a.$$
where the right side depends on z, we take this equal to $\frac{1}{z}$; so
\[c = \frac{x_2 f(x_1) - g(x_1) + zsf(x_1)}{z} \]
then, replacing z in the numerator and choosing $s = -1$, $a = -m$, we get
\[c = \frac{-g(x_1) + f(x_1)[2F(x_1) + m]}{z} \]
whose solution is $h(x_1, x_2) = z = 2 \int_{x_1}^{x_2} f(s)ds + x_2 - m$.

Note that $Z(h)$ is a submanifold of \mathbb{R}^2 homeomorphic to \mathbb{R} therefore no limit cycles are contained in $Z(h)$.

Since $l(\mathbb{R}^2, h) = 0$, then by Proposition 1.1, (1) has not limit cycles. \hfill \Box

Proposition 2.6 If there exist a function $\psi(x_1)$ strictly monotonic such that it satisfies the inequality
\[\psi^2(x_1)f^2(x_1) + 4\psi'(x_1)\psi(x_1)g(x_1) \in \mathcal{F}_{\mathbb{R}^2}^-, \]
then the Lienard system has not periodic orbits.

Proof: Suppose the function h has the form $h = \psi(x_1)x_2$, then the associated equation becomes
\[x_2 \frac{d\psi(x_1)}{dx_1} - (g(x_1) + f(x_1)x_2)\psi(x_1) = h[c + s\psi(x_1)]. \]

Taking $s = 0$ and as by conditions of Proposition 1.1 ch must be in $\mathcal{F}_{\mathbb{R}^2}$, we need that
\[x_2^2 \psi_{x_1}(x_1) - \psi(x_1)f(x_1)x_2 - \psi(x_1)g(x_1) \in \mathcal{F}_{\mathbb{R}^2}. \]
Now this inequality holds if $\psi' \geq 0$, ($\psi' \leq 0$) and the discriminant
\[\psi^2(x_1)f^2(x_1) + 4\psi_{x_1}\psi(x_1)g(x_1) \in \mathcal{F}_{\mathbb{R}^2}^- \]
But it holds by hypothesis. \hfill \Box

Corollary 2.7 If $g(x_1)$ is strictly decreasing and satisfies $f^2(x_1) + 4g_{x_1} \in \mathcal{F}_{\mathbb{R}^2}^-$, then the Lienard system has not periodic orbits.

References

Received: July 27, 2015; Published: August 25, 2015