Notes on the Non Self-adjoint Elliptic Differential Operators

Mehdi Karami Khorramabadi and Ali Sameripour

Department of Mathematics, Lorestan University
Khorramabad, Iran

Copyright © 2014 Mehdi Karami Khorramabadi and Ali Sameripour. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let Ω be a bounded domain with smooth boundary in \mathbb{R}^n. Let the space $H_\ell = W_{2,\alpha}^\ell(\Omega)$ of vector functions $u(x) = (u_1(x), \ldots, u_\ell(x))$ defined on Ω with finite norm: $|u, W_{2,\alpha}^\ell(\Omega)| = \left(\sum_{i=1}^n \int \rho^{2\alpha}(x)|u'_{x_i}(x)|^2_C dx + \int_\Omega |u(x)|^2_C \right)^{1/2}$. In this paper we will find the asymptotic distribution of eigenvalues of the operator $(Au)(x) = -\sum_{i,j=1}^n (\rho^{2\alpha}(x)a_{ij}(x)q(x)u_{x_i}(x))_{x_j}'$ in the space $H_\ell = L^2(\Omega)^\ell$.

Mathematics Subject Classifications: Primary 47F05 (35JXX, 35PXX)

1 Introduction

Let Ω be a bounded domain with smooth boundary in \mathbb{R}^n, i.e., $\partial \Omega \in C^\infty$. We introduced the space $\mathcal{H}_\ell = W_{2,\alpha}^\ell(\Omega) = W_{2,\alpha}^1(\Omega) \times \cdots \times W_{2,\alpha}^\ell(\Omega)$ (ℓ-times) as the space of vector functions $u(x) = (u_1(x), \ldots, u_\ell(x))$ defined on Ω with finite norm:

$$|u, W_{2,\alpha}^\ell(\Omega)| = \left(\sum_{i=1}^n \int \rho^{2\alpha}(x)|u'_{x_i}(x)|^2_C dx + \int_\Omega |u(x)|^2_C \right)^{1/2}.$$

By $\overset{\circ}{\mathcal{H}}_\ell$ we denote the closure of $C_0^\infty(\Omega)^\ell$ in \mathcal{H}_ℓ, for $\ell = 1$ we set $\mathcal{H} = \mathcal{H}_1$ and $\overset{\circ}{\mathcal{H}} = \mathcal{H}_1$. In this article, we investigate the asymptotic formula for distribution

1Research supported by Lorestan University, Khorramabad, Iran
of the eigenvalues (ev) of a non-self adjoint elliptic differential operator A defined by:

$$(Au)(x) = -\sum_{i,j=1}^{n} (\rho^{2\alpha}(x) a_{ij}(x) q(x) u_{x_i}'(x))_{x_j}' \quad \text{in space } H_\ell = L_2(\Omega)^\ell \text{ here},$$

$$\rho(x) = \text{dist}\{x, \partial \Omega\}, \quad \alpha \in [1,0), \quad a_{ij}(x) = a_{ji}(x) \quad (i, j = 1, 2, \ldots, n),$$

$$a_{ij}(x) \in C^2(\overline{\Omega}) \quad (i, j = 1, 2, \ldots, n), \quad q(x) \in C^2(\overline{\Omega}, \text{ End } \mathbb{C}^\ell).$$

Furthermore assume that for $\forall x \in \overline{\Omega}$, the matrix function $q(x)$ has simple eigenvalues $\mu_1(x), \ldots, \mu_\ell(x)$ arranged in the complex plane in the following way:

$$\arg \mu_j(x) = 0 \quad (j = 1, 2, \ldots, \nu), \quad \mu_j(x) \in \Phi \quad (j = \nu + 1, \ldots, \ell),$$

where $\Phi = \{z \in \mathbb{C} : |\arg z| < \varphi\}, \quad \varphi \in (0, \pi)$. We also assume that the matrix function $a_{ij}(x)$ satisfies the uniformly elliptic condition: i.e., there exist $M > 0$ such that for every $s = (s_1, \ldots, s_n) \in \mathbb{C}^n$, $x \in \Omega$ we have $|s|^2 \leq M \sum_{i,j=1}^{n} a_{ij}(x) s_i \overline{s_j}$.

Now for a closed extension of the operator A we need to extend its domain to the:

$$D(A) = \{u \in H_\ell \cap W_{2,loc}^2(\Omega)^\ell : \sum_{i,j=1}^{n} (\rho^{2\alpha} a_{ij} u_{x_i}'(x))_{x_j}' \in H_\ell\},$$

where $W_{2,loc}^2(\Omega) = \{u : \sum_{i=0}^{2} \int_{J} |u^{(i)}(x)|^2 \, dx < \infty \text{ is open set in } \Omega\}$

Here and in the sequel the value of the function $\arg z \in (-\pi, \pi]$, and $\|T\|$ denotes the norm of the bounded operator $T : H_\ell \to H_\ell$.

2 Resolvent Estimate

Theorem 2.1. Let $S \subset \Phi \setminus R_+$ be some closed sector with vertex at 0, and as in Section 1, we recall that for $\forall x \in \overline{\Omega}$, the matrix function $q(x)$ has simple eigenvalues $\mu_1(x), \ldots, \mu_\ell(x)$ which are different from zero and $\arg \mu_j(x) = 0$ for $j = 1, 2, \ldots, \nu$ and $\mu_j(x) \in \Phi$ for $j = \nu + 1, \ldots, \ell$ where $\Phi = \{z \in \mathbb{C} : |\arg z| < \varphi\}, \quad \varphi \in (0, \pi)$ (i.e., the eigenvalues $\mu_1(x), \ldots, \mu_\nu(x)$ lie on the positive real line inside the angle Φ, and the rest of the eigenvalues $\mu_{\nu+1}(x), \ldots, \mu_\ell(x)$ lie outside of the angle Φ in view of $S \subset \Phi \setminus R_+$, implies that all the eigenvalues $\mu_1(x), \ldots, \mu_\ell(x)$ lie on the complex plane and outside of the closed sector S).

Then the operator A has a discrete spectrum, and for sufficiently large in modules $\lambda \in S$ the inverse operator $(A - \lambda I)^{-1}$ exists and is continuous, and the following estimate is valid:

$$\|(A - \lambda I)^{-1}\| \leq M_S |\lambda|^{-1} \quad (\lambda \in S, \quad |\lambda| \geq C_S), \quad (2.1)$$
where M_S, C_S are sufficiently large numbers. The symbol $\| \cdot \|$ stands for the norm of a bounded operator in H or H_ℓ.

Let the sequence of (ev) eigenvalues of the operator A in the angle $\Phi = \{ z \in \mathbb{C} : |\arg z| \leq \varphi \}$, $\varphi \in (0, \pi)$, be denoted by $\lambda_1, \lambda_2, \ldots$ enumerated in the non-decreasing order of their absolute values and taking into account their multiplicity zero in the case $\omega = \max\{ \frac{n}{2}, \frac{n-1}{2-2\alpha} \} \in \mathbb{N}$.

Let $N(t) = \text{card}\{ j : |\lambda_j| \leq t \}$, $t > 0$. According to theorem 1, the operator A has a finite number of (ev) in every set φ_ψ, $\psi > 0$ of the form (1). Therefore, it is easy to proof that:

$$\lim_{j \to \infty} \arg \lambda_j = 0. \quad (1.1')$$

The main result of this paper is formulated in the following Theorem.

\textbf{Theorem 1.2.} the following statement are hold:

(i) if $\alpha \in [0, 1)$, $\alpha < \frac{1}{n}$ then we have

\[
N(t) \sim (2\pi)^{-n} v_n t^{n/2} \sum_{k=1}^{\nu} \int_{\Omega} \rho^{-\alpha}(x) \mu_k^{-\frac{n}{2}}(x)(\det(a(x)))^{-\frac{1}{2}} dx,
\]

where v_n denotes the volume of the unit ball in R^n and $\alpha(x) = (a_{ij}(x))_{i,j=1}^n$.

Now let the sequence of eigenvalues of the operator A in the angle $\Phi = \{ z \in \mathbb{C} : |\arg z| \leq \varphi \}$, $\varphi \in (0, \pi)$, be denoted by $\{ \lambda_i \}$ enumerated in the non-decreasing order of their absolute values and taking into account their multiplicities. Then based on the above assertions the following result holds. Since the operator A has a finite number of eigenvalues in every set Φ_ψ, $\psi > 0$ of the form (2.1), it is easy to prove that

$$\lim_{i \to \infty} \arg \lambda_i = 0. \quad (2.1')$$

We define $N(t) = \text{card}\{ j : |\lambda_j| \leq t \}$, $t > 0$. For our later work we define $\omega = \max\{ \frac{n}{2}, \frac{n-1}{2-2\alpha} \}$.

\textbf{Theorem 3.1.} (i) if $\alpha \in [0, 1)$, $\alpha < \frac{1}{n}$ then we have

\[
N(t) \sim (2\pi)^{-n} v_n t^{n/2} \sum_{k=1}^{\nu} \int_{\Omega} \rho^{-\alpha}(x) \mu_k^{-\frac{n}{2}}(x)(\det(a(x)))^{-\frac{1}{2}} dx,
\]

where v_n denotes the volume of the unit ball in R^n and $\alpha(x) = (a_{ij}(x))_{i,j=1}^n$.

Hence, for every natural number S, such that

$$S \in \mathbb{N}, \; S > \omega = \max\{ \frac{n}{2}, \frac{n-1}{2-2\alpha} \}, \quad S \in (\omega, \omega + 1]$$

we will have:

$$|\text{tr}(A - \lambda I)^{-s} - \text{tr} UB(\lambda)U^{-1}| \leq M|\lambda|^{-\frac{1}{2}}|\Gamma(\lambda)|_s^s$$
where the symbols tr, 1, 1, denote the trace of a trace-class operators and the \(\sigma \)-norm of the operator respectively [4].

By using the representation of the operator \(B(\lambda) \) we obtain:

\[
\text{tr} \ U B(\lambda)^* U^{-1} = \text{tr} \ B(\lambda)^* = \text{tr} \ B_s(\lambda)
\]

where \(B_s(\lambda) = \text{diag}\{(P_1 - \lambda I)^{-s}, \ldots, (P_\ell - \lambda I)^{-s}\} \).

If we estimate \(|\Gamma(s)|_s \) by using (7) and (8) we obtain this relation:

\[
| \sum_{i=1}^{+\infty} (\lambda'_i - \lambda)^{-s} - \sum_{j=1}^{\ell} \sum_{i=1}^{+\infty} (\lambda_{ij} - \lambda)^{-s} | \leq M \psi |\lambda|^{\omega-s-\frac{1}{4}}, \quad (\lambda \in \phi \psi, \ |\lambda| \geq C \psi)
\]

where \(\lambda'_1, \lambda'_2, \ldots, \lambda_{1j}, \lambda_{2j}, \ldots \) are denoted respectively the (ev.) of the operators \(A \) and \(P_j \). Notice that according to (8), there are finite number of (ev.) of the using the counter integral method in the same way as in [5, §4] for \(\omega \neq 1, 2, \ldots \) we can again obtain like the above relation by counter integral: i.e.

\[
\sum_{i=1}^{+\infty} (\lambda_i + \tau)^{-S} = \sum_{j=1}^{\nu} \sum_{i=1}^{+\infty} (\lambda_{ij} + \tau)^{-S} + O(\tau^{\omega-s-\frac{1}{4}}), \quad \tau \to +\infty.
\]

From here and from (2) kipping in mind that \(\lambda_{ij} > 0 \) (for \(i = 1, 2, \ldots, j = 1, \ldots, \nu \)). Now it is easy to establish the asymptotical formula:

\[
\int_0^{+\infty} \frac{dN_i(t)}{(t+\tau)^S} \sim \sum_{j=1}^{\nu} \sum_{i=1}^{\nu} \int_0^{+\infty} \frac{dN_i(t)}{(t+\tau)^S}, \quad \tau \to +\infty
\]

where \(N_i(t) = \text{card}\{ j : \lambda_{ij} \leq t \} \), \(i = 1, \ldots, \nu \) which are well known asymptotical formulas for functions-\(N_i(t) \) (see for example [6]), after apply of M. V. Keldish’s theorem of tasker-type we establish the assertion of theorem 2 in applying the multidimensional Tauberian Theorems of A. A. Shkalikov [7].

References

Received: July 15, 2014