Some Bounds and Exact Results on the Substantial

Independence Number of

Tensor Product of Two Simple Connected Graphs

V. Rani Ratha Bai¹ and S. Robinson Chellathurai²

¹Department of Mathematics,
Scott Christian College (Autonomous)
Nagercoil – 629 003, Tamil Nadu, India

²Department of Mathematics,
Scott Christian College (Autonomous)
Nagercoil – 629 003 Tamil Nadu, India

Copyright © 2014 V. Rani Ratha Bai and S. Robinson Chellathurai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Given a graph G, a substantial independent set S is a non empty subset of the vertex set V of the graph G = (V, E) if (i) S is an independent set of G and (ii) every vertex in V\S is adjacent to at most one vertex in S. The substantial independence number \(\beta_s(G) \) is the maximum cardinality of a maximal substantial independent set. In this paper we study the substantial independence number and some bounds for the Tensor product of two simple graphs namely \(P_2 \times P_n, \ P_m \times K_{1,3}, \ C_m \times K_{1,3}, \ P_2 \times CP_n, \ P_m \times CP_n, \ K_2 \times G_n, \ K_2 \times H_n \) and \(P_m \times P_n \).

Keywords: Substantial independent set, Substantial independence number, tensor product
1. Introduction

Given a graph G, a substantial independent set S is a nonempty subset of the vertex set V of a graph G = (V, E) if (i) S is an independent set of G and (ii) every vertex in V\S is adjacent to at most one vertex in S. A substantial independence set S is set to be maximal if any vertex set properly containing S is not substantial independent set. The substantial independence number \(\beta_S(G) \) is the maximum cardinality of a maximal substantial independent set.

Definition 1.1: The Tensor product G×H of two graphs G and H is a graph with vertex set V(G)×V(H) and edge set consisting of those pairs of vertices \((u_1, v_1)(u_2, v_2)\) where \(u_1u_2 \in E(G)\) and \(v_1v_2 \in E(H)\). That is \((u_1, v_1)(u_2, v_2) \in E(G \times H)\) whenever \(u_1u_2 \in E(G)\) and \(v_1v_2 \in E(H)\).

Example 1.2: Consider the following graph G.

![Graph G](image)

Fig. 1.1

Here \(\{v_1, v_3, v_5, v_6\}, \{v_2, v_4, v_7, v_8\}\) are maximal independent sets and hence the independence number \(\beta(G) = 4 \). The sets \(\{v_1, v_4, v_6\}, \{v_5, v_6, v_9\}\) are substantial independent sets which are maximal with maximum cardinality and hence \(\beta_s(G) = 3 \). Here \(\{v_2, v_5, v_6, v_9\}\) is a minimal dominating set and hence the dominating number \(\gamma(G) = 4 \).

Remarks: 1.3

1. For any graph G, \(\beta_s \leq \gamma \leq \beta \) and equality holds for totally disconnected graphs. For bistar and for the graph \(P_n o K_1 \) we have \(\beta_s = \beta \).
2. Let G be a graph with no isolated vertices and if S is a substantial independent set then V/S is a dominating set and hence we have \(V - S \geq \gamma \) that is \(n - \beta_s \geq \gamma \) that is \(\gamma + \beta_s \leq n \) that is \(\beta_s \leq n - r \).

Equality holds for the graph \(P_n o K_1 \) when n is even.
Some bounds and exact results on the substantial independence number

\[\gamma \left(P_n \circ K_1 \right) = \beta_s \left(P_n \circ K_1 \right) = \frac{n}{2} \quad \text{and hence} \quad \gamma + \beta_s = n. \]

3. \(\beta_s (K_n) = 1 \quad n \geq 1. \)

4. \(\beta_s \left(K_{m,n} \right) = 1 \quad \text{for} \quad m, n \geq 1 \)

5. \(\beta_s \left(W_n \right) = 1; n \geq 4. \)

6. \(\beta_s \left(C_{bn} \right) = \frac{n}{2} \) where \(C_{bn} \) is a comb with \(n \) vertices.

7. \(\beta_s \left(\overline{K}_n \right) = n \)

8. In general for non isolated graphs \(1 \leq \beta_s \leq \frac{n}{2} \)

Theorem: 1.4: If \(S \) is a substantial independent set in a connected graph \(G=(V,E) \) and if \(u, v \in S \) then \(d(u,v) \geq 3. \)

Proof: Let \(S \) be a substantial independent set of \(G. \)

Claim: \(d(u,v) \geq 3 \) for every \(u, v \in S. \)

Suppose \(d(u,v) < 3. \) Then \(d(u,v) = 1 \) or 2. But \(d(u,v) = 1 \) is not possible, since \(u \) and \(v \) are independent vertices. If \(d(u,v) = 2 \) then there is a vertex in \(V/S \) which is adjacent to both \(u \) and \(v. \) This is also not possible since \(S \) is a substantial independent set and \(u, v \in S. \) Hence \(d(u,v) \geq 3 \) for all \(u, v \in S. \)

Result: 1.5: Substantial independent is hereditary but not super hereditary hence a substantial independent set is maximal iff it is 1-maximal.

2. Substantial Independent set and the substantial independence number for the tensor product of two simple graphs namely \(P_2 \times P_n, P_m \times K_{1,3}, C_m \times K_{1,3}, P_2 \times CP_n, P_m \times CP_n, K_2 \times G_n, K_2 \times H_n, \) and \(P_m \times P_n. \)

Lemma: 2.1 If \(P_n \) is a path with \(n \) vertices then we have

\[\beta_s \left(P_2 \times P_n \right) = \begin{cases} \left\lfloor \frac{n}{3} \right\rfloor & \text{if} \quad n \not\equiv 0 \pmod{3} \\ \frac{2n}{3} & \text{if} \quad n \equiv 0 \pmod{3} \end{cases} \]
Proof: The graph $P_2 \times P_n$ given in figure 2.1 consists of two rows and n columns.

Let $V(P_2 \times P_n) = \{v_{i,j} : i = 1, 2 \text{ and } j = 1, 2, \ldots, n\}$ be the vertex set of $P_2 \times P_n$. Clearly $S = \{v_{i,1+3i}, v_{2,1+3i} : i = 0, 1, 2, \ldots, \left\lceil \frac{n}{3} \right\rceil - 1\}$ is a maximal substantial independent set for $P_2 \times P_n$ with maximum cardinality. Then $\beta_s(P_2 \times P_n) = |S| \geq 2 \left\lceil \frac{n}{3} \right\rceil$.

Since $P_2 \times P_n$ is the union of two paths and $\beta_s(P_n) = \left\lceil \frac{n}{3} \right\rceil$ we have $\beta_s(P_2 \times P_n) \leq 2 \beta_s(P_n) = 2 \left\lceil \frac{n}{3} \right\rceil$.

So that we have $\beta_s(P_2 \times P_n) = 2 \left\lceil \frac{n}{3} \right\rceil$ Hence $\beta_s(P_2 \times P_n) = \begin{cases} 2 \left\lceil \frac{n}{3} \right\rceil & \text{if } n \not\equiv 0 \pmod{3} \\ \frac{2n}{3} & \text{if } n \equiv 0 \pmod{3} \end{cases}$

Note 2.2: When $n \equiv 0 \pmod{3}$ the maximum cardinality maximal substantial independent set for $P_2 \times P_n$ is a minimum cardinality minimal dominating set. Hence in this case $\beta_s(P_2 \times P_n) = \gamma(P_2 \times P_n)$.

Theorem 2.3 For the bipartite graph $K_{1,3}$ and the path P_m we have

$\beta_s(P_m \times K_{1,3}) = \begin{cases} \frac{2m}{3} & \text{if } m \equiv 0 \pmod{3} \\ 2 \left\lceil \frac{m}{3} \right\rceil & \text{if } m \not\equiv 0 \pmod{3} \end{cases}$

Proof: Let $V(P_m \times K_{1,3}) = \{v_{i,j} : i = 1, 2, \ldots, m \text{ and } j = 1, 2, 3, 4\}$
The graph $P_m \times K_{1,3}$ contains m rows and 4 columns. We select the vertices $v_{1,1}$ and $v_{1,4}$ from the first row. Then we cannot select any vertices from the second and third row. Next we select the vertices $v_{4,1}$ and $v_{4,4}$ from the fourth row. Proceeding like this we can construct a maximal substantial independent set S. Thus $S = \{v_{i+3i,1}, v_{i+3i,4} : i = 0, 1, 2, \ldots, \left\lceil \frac{m}{3} \right\rceil - 1\}$. Clearly S is 1-maximal and hence maximal. If we consider any other maximal substantial independent set S' then $|S'| \leq |S|$. Hence S is a maximum cardinality maximal substantial independent set and $|S| = 2 \left\lceil \frac{m}{3} \right\rceil$ and hence $\beta_s(P_m \times K_{1,3}) = 2 \left\lceil \frac{m}{3} \right\rceil$ when $m \not\equiv 0 \pmod{3}$ and $\beta_s(P_m \times K_{1,3}) = \frac{2m}{3}$ when $m \equiv 0 \pmod{3}$.

Corollary: 2.4 We have $\beta_s(P_2 \times K_{1,3}) = 2$

Illustration: 2.5 Consider the graph $P_6 \times K_{1,3}$ in figure 2.2

Here $S = \{v_{1,1}, v_{1,4}, v_{4,1}, v_{4,4}\}$ is the maximal substantial independent with maximum cardinality and hence $\beta_s(P_6 \times K_{1,3}) = 4$.

Theorem: 2.6 For the bipartite graph $K_{1,3}$ and the cycle C_m we have

$$\beta_s(C_m \times K_{1,3}) = \begin{cases}
2 \left\lceil \frac{m}{3} \right\rceil & \text{if } m \not\equiv 0 \pmod{3} \\
\frac{2m}{3} & \text{if } m \equiv 0 \pmod{3}
\end{cases}$$
Proof: Let \(V(C_m \times K_{1,3}) = \{v_{i,j} : i = 1,2...m \text{ and } j = 1,2,3,4 \} \). The graph \(C_m \times K_{1,3} \) contains \(m \)-rows and 4-columns. Also \(v_{1,1} \) is adjacent to \(v_{m,2}, v_{m,3} \) and \(v_{m,4} \) and \(v_{m,1} \) is adjacent to \(v_{1,2}, v_{1,3} \) and \(v_{1,4} \). Hence the maximal substantial independent set is of the form:

\[
S = \left\{ v_{i,j} : j = 0,1,2...\left\lfloor \frac{m}{3} \right\rfloor - 1 \right\}
\]

Clearly \(S' = S \cup \{v\} \) where \(v \in V \setminus S \) is not a substantial independent set. Hence \(S \) is 1-maximal and hence maximal.

If \(S' \) is any other maximal substantial independent set then \(|S'| \leq |S| \).

Hence \(S \) is a maximal substantial independent set with maximum cardinality.

Hence \(\beta_S(C_m \times K_{1,3}) = \left| \left\{ v_{i,j} \right\} \right| = 2 \times \left\lfloor \frac{m}{3} \right\rfloor = 2 \left\lfloor \frac{m}{3} \right\rfloor \) if \(m \not\equiv 0 \pmod{3} \)

\[
= \begin{cases}
2 \left\lfloor \frac{m}{3} \right\rfloor & \text{if } m \not\equiv 0 \pmod{3} \\
 \frac{2m}{3} & \text{if } m \equiv 0 \pmod{3}
\end{cases}
\]

Illustration: 2.7 Consider the graph \(C_3 \times K_{1,3} \) in figure 2.3

![Fig.2.3](image.png)

Here \(S = \{v_{1,1}, v_{1,4}\} \) is the maximal substantial independent with maximum cardinality and hence \(\beta_S(C_3 \times K_{1,3}) = 2 \).
Theorem: 2.8 If CP_n is a caterpillar in which the base vertices are of degree 3 then we have $\beta_s(P_2 \times CP_n) = n - 2$

Proof: Let, $V(P_2 \times CP_n) = \{v_{ij} : i = 1, 2 \text{ and } j = 1, 2, \ldots, n\}$. CP_n is a caterpillar in which the base vertices are of degree 3. The graph $P_2 \times CP_n$ contains 2-rows and n-columns. Let $S = \{v_{1,3+2j}, v_{2,3+2j} : j = 0, 1, \ldots, \left\lfloor \frac{n-2}{2} \right\rfloor\}$.

Then clearly S is 1-maximal and hence maximal substantial independent set. It S' is any other substantial independent set than $|S'| \leq |S|$ hence $\beta_s(P_2 \times CP_n) = |S| = 2 \times \frac{n-2}{2} = n - 2$.

Note: 2.9 The substantial independent number for CP_n is $\beta_s(CP_n) = \frac{n-2}{2}$.

Hence $\beta_s(P_2 \times CP_n) = 2 \times \frac{n-2}{2} = 2 \beta_s(CP_n)$

Illustration: 2.10 Consider the graph $P_2 \times CP_{12}$ in figure 2.4

Here $\beta_s(P_2 \times CP_{12}) = 10$.

Theorem: 2.11 If CP_n is a caterpillar in which the base vertices are of degree 3

then we have $\beta_s(P_m \times CP_n) \geq \begin{cases} \frac{m(n-2)}{4} & \text{if } m \equiv 0 \pmod{4} \\
\frac{(m+1)(n-2)}{4} & \text{if } m \equiv 1 \pmod{4} \\
\frac{m}{4}(n-2) & \text{if } m \equiv 2,3 \pmod{4} \end{cases}$

Proof: Let $V(P_m \times CP_n) = \{v_{ij} : i = 1, 2 \ldots m \text{ and } j = 1, 2 \ldots n\}$. The graph $P_m \times CP_n$ contains m-rows and n-columns. To construct a maximal substantial independent set S we select the vertices $v_{1,3}, v_{1,3}$ etc. from the first row and $V_{2,3}, V_{2,5}$ etc. from
the second row. Then we cannot select any vertices from the third row and fourth row. Next we select the vertices \(v_{5,3}, v_{5,5} \) etc. From the fifth row and \(v_{6,3}, v_{6,5} \) etc. from the sixth row and so on. Then clearly S is 1-maximal and hence maximal substantial independent set. It \(S' \) is any other substantial independent set than \(|S'| \leq |S| \). There are three cases.

Case (i) : \(m \equiv 0 \) (mod 4).

In this case the maximal substantial independent set is of the form.

\[
S = \left\{ v_{1+4i,3+2j}, v_{2+4i,3+2j}, v_{3+4i,3+2j} : i = 0,1,\ldots, \left\lfloor \frac{m}{4} \right\rfloor - 1 \text{ and } j = 0,1,\ldots, \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \right\}
\]

So that \(|S| = 2 \times \frac{m}{4} \times \frac{n-2}{2} = \frac{m(n-2)}{4} \). Hence \(\beta_s(P_m \times CP_n) \geq \frac{m(n-2)}{4} \)

Case (ii) : \(m \equiv 1 \) (mod 4)

In this case the maximal substantial independent set is of the form.

\[
S = \left\{ v_{1+4i,3+2j}, v_{2+4i,3+2j}, v_{3+4i,3+2j} : i = 0,1,\ldots, \left\lfloor \frac{m-1}{4} \right\rfloor - 1 \text{ and } j = 0,1,2,\ldots, \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \right\}
\]

So that \(|S| = 2 \left(\frac{m-1}{4} \right) \frac{n-2}{2} + \frac{n-2}{2} = \left(\frac{m-1}{4} \right) + 1 \left(\frac{n-2}{2} \right) \)

\[
= \frac{m+1}{2} \frac{n-2}{2} = \frac{(m+1)(n-2)}{4}
\]

Hence \(\beta_s(P_m \times CP_n) \geq \frac{(m+1)(n-2)}{4} \)

Case (iii) \(m \equiv 2,3 \) (mod 4)

In this case the maximal substantial independent set S is of the form

\[
S = \left\{ v_{1+4i,3+2j}, v_{2+4i,3+2j}, v_{3+4i,3+2j} : i = 0,1,\ldots, \left\lfloor \frac{m}{4} \right\rfloor - 1 \text{ and } 0,1,\ldots, \left\lfloor \frac{n-2}{2} \right\rfloor - 1 \right\}
\]

So that \(|S| = 2 \left(\frac{m}{4} \right) \left(\frac{n-2}{2} \right) = \left(\frac{m}{4} \right)(n-2) \). Hence \(\beta_s(P_m \times CP_n) \geq \left(\frac{m}{4} \right)(n-2) \)
Illustration: 2.12 Consider the graph $P_8 \times CP_{10}$ in figure 2.5

![Fig.2.5](image)

Clearly $\beta_s(P_8 \times CP_{10}) = \frac{8 \times (10 - 2)}{4} = 2 \times 8 = 16$

Theorem: 4.13 If G_n is a gear graph then we have $\beta_s(K_2 \times G_n) \geq \begin{cases} n & \text{if } n \text{ is even} \\ n + 1 & \text{if } n \text{ is odd} \end{cases}$

Proof: G_n is the Gear graph with $2n+1$ vertices and $3n$ edges. Hence the graph $K_2 \times G_n$ consists of 2-rows and $2n+1$ columns.

Let $V(K_2 \times G_n) = \{v_{i,j} : i = 1,2 \text{ and } j = 1,2\ldots(2n+1)\}$. To form a maximal substantial independent set we select the vertices $v_{1,3}, v_{1,7}$ etc. from the first row and $v_{2,3}, v_{2,7}$ etc. from the second row. Then clearly S is 1-maximal and hence maximal substantial independent set. It S' is any other substantial independent set than $|S'| \leq |S|$. There are two cases.

Case (i) : n is even.
In this case the maximal substantial independent set
$S = \left\{v_{1,3+j}, v_{2,3+j} : j = 0,1,\ldots, \left(\frac{n}{2} - 1\right)\right\}$ so that $|S| = 2 \cdot \frac{n}{2} = n$ and hence $\beta_s(K_2 \times G_n) \geq n$.

Case (ii) n is odd
In this case the maximal substantial independent set
$S = \left\{v_{1,3+j}, v_{2,3+j}, v_{1,2n}, v_{2,2n} : j = 0,1,\ldots, \left(\frac{n-1}{2} - 1\right)\right\}$ so that $|S| = 2 \times (\frac{n-1}{2}) + 2$
$= (n-1) + 2 = n + 1$ and hence $\beta_s(K_2 \times G_n) \geq n + 1$
Illustration: 2.14 Consider the graph $K_2 \times G_7$ in figure 2.6

Fig. 2.6

Clearly $\beta_s(K_2 \times G_7) = 8$

Illustration: 2.15 Consider the graph $K_2 \times G_8$ in figure 2.7

Fig. 2.7

Clearly $\beta_s(K_2 \times G_7) = 8$

Theorem: 2.16 If H_n is a Helm graph we have $\beta_s(K_2 \times H_n) = 2n$

Proof: We know that the Helm graph H_n is a graph with $2n+1$ vertices and $3n$ edges. Let $V(K_2 \times H_n) = \{v_{i,j} : i = 1,2 \text{ and } j = 1,2,...,(2n+1)\}$. According to the rule of Tensor product the vertex $v_{1,1}$ is adjacent to $v_{2,2}, v_{2,4},...$ and $v_{2,1}$ is adjacent to $v_{1,2}, v_{1,4},...$ Also $v_{1,2}$ is adjacent to $v_{2,1}, v_{2,3}$ and $v_{2,14}$ and $v_{2,2}$ is adjacent to $v_{1,1}, v_{1,3}$ and $v_{1,14}$. The vertices $v_{1,3}, v_{1,5}, v_{1,7}, v_{1,9}$ etc. are adjacent to only $v_{2,2}, v_{2,4}, v_{1,6}$ etc. respectively.

Similarly the vertices $v_{2,3}, v_{2,5}, v_{2,7}$ etc are only adjacent to $v_{1,2}, v_{1,4}, v_{1,6}$ etc. Hence to form a maximal substantial independent set we select the vertices $v_{1,3}, v_{1,5}$ etc. From the first row and $v_{2,3}, v_{2,5}$ etc. from the second row. Hence $S = \{v_{1,3+2j}, v_{2,3+2j} : j = 0,1,...(n-1)\}$ is a maximal substantial independent set. Then clearly S is 1-maximal and hence maximal substantial independent set. It S' is any other substantial independent set than $|S'| \leq |S|$.

So that $|S| = 2n$ and hence $\beta_s(K_2 \times H_n) = |S| = 2n$.

Illustration: 2.17 Consider the graph $K_2 \times H_6$ in figure 2.8

Fig. 2.8

Clearly $\beta_s(K_2 \times H_6) = 2 \times 6 = 12$.
References

Received: August 22, 2014; Published: October 22, 2014