Geometry on

G^L-Systems of Homogenous Polynomials

Linfan Mao

Chinese Academy of Mathematics and System Science
Beijing 100190, P.R. China

Copyright © 2014 Linfan Mao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For integers $n \geq 2$, $m \geq 1$, a G^L-system (ES_m^{n+1}) is such a system consisting of m homogenous polynomials $P_1(x_1, x_2, \ldots, x_{n+1})$, $P_2(x_1, x_2, \ldots, x_{n+1})$, \ldots, $P_m(x_1, x_2, \ldots, x_{n+1})$ in $n + 1$ variables with coefficients in \mathbb{C}, which inherits a topological graph $G[ES_m^{n+1}]$ in $\mathbb{P}^n \mathbb{C}$. We characterize the geometrical properties of system (ES_m^{n+1}) in $\mathbb{P}^n \mathbb{C}$, find its combinatorial invariants under linear transformations, and determine its normalization, i.e., a combinatorial manifold \tilde{M} such that $\phi : \tilde{M} \rightarrow \tilde{S}$ is a homeomorphism by combinatorics, where $\tilde{S} = \bigcup_{i=1}^m S_i$ with S_i a hypersurface determined by $P_i(\overline{x}) = 0$ in $\mathbb{P}^n \mathbb{C}$ for integers $1 \leq i \leq m$. Indeed, such a combinatorial manifold \tilde{M} is nothing else but a manifold of dimensional n. Particularly, if $n = 2$, its genus is determined in this paper also.

Mathematics Subject Classification: 05C15, 34A34, 37C75, 70F10, 92B05

Keywords: homogenous polynomial, G^L-system of homogenous polynomial, complex projective space, hypersurface, combinatorial manifold, topological graph, non-solvable differential equation

§1. Introduction

A polynomial $P(x_1, x_2, \ldots, x_{n+1})$ in $n + 1$ variables with coefficients in \mathbb{C} is homogenous of degree $d \geq 1$ if for any constant $\lambda \neq 0$, there is

$$P(\lambda x_1, \lambda x_2, \ldots, \lambda x_{n+1}) = \lambda^d P(x_1, x_2, \ldots, x_{n+1}).$$

Such a polynomial $P(x_1, x_2, \ldots, x_{n+1})$ determines a hypersurface defined by $P(x_1, x_2, \ldots, x_{n+1}) = 0$ in the projective space $\mathbb{P}^n \mathbb{C}$, a set of complex one-dimensional subspace, i.e., hyperplanes passing through origin of the complex vector space \mathbb{C}^{n+1},
which can be classified into two classes

$$\mathbb{P}^n \mathbb{C} = \{(x_1, x_2, \cdots, x_n, 1) \in \mathbb{C}^{n+1}, \; x_i \in \mathbb{C}, \; 1 \leq i \leq n\} \cup \{(x_1, x_2, \cdots, x_n, 0) \in \mathbb{C}^{n+1}, \; x_i \in \mathbb{C}, \; 1 \leq i \leq n\}.$$

Geometrically, such a one-dimensional subspace spanned by \((x_1, x_2, \cdots, x_n, 1) \in \mathbb{P}^n \mathbb{C}\) can be identified with that of \((x_1, x_2, \cdots, x_n) \in \mathbb{C}^n\), and that of spanned by \((x_1, x_2, \cdots, x_n, 0) \in \mathbb{P}^n \mathbb{C}\) can be identified with that of the hyperplane at the infinite, i.e., \(\mathbb{P}^n \mathbb{C} = \mathbb{C}^n \cup \mathbb{P}^{n-1} \mathbb{C}\). Whence, we can characterize the behavior of one-dimensional subspace \(C\) by its affine behavior \(P(x_1, x_2, \cdots, x_n, 1) \in \mathbb{C}^n\) and that of \(P(x_1, x_2, \cdots, x_n, 0) \in \mathbb{P}^{n-1} \mathbb{C}\). Particularly, if \(\mathbb{C}\) is replaced by \(\mathbb{R}\), then the behavior of \(C\) is divided into to parts: the reality in \(\mathbb{R}^n\) combined with those of in the infinite.

Let \(\varpi = (x_1, x_2, \cdots, x_{n+1})\), \(\bar{\varpi} = (k_1, k_2, \cdots, k_{n+1})\), \(a_{\varpi} = a_{k_1, k_2, \cdots, k_{n+1}}\), \(\varpi^T = x_1^{k_1} x_2^{k_2} \cdots x_{n+1}^{k_{n+1}}\) and

\[P(\varpi) = \sum_{k_1+\cdots+k_n=d} a_{\varpi}^{\varpi^T} \]

be a homogenous polynomial of degree \(d\), an algebraic covariant of weight \(p\) is a homogenous polynomial \(C(a_{\varpi}^{\varpi^T})\) such that

\[C(a_{\varpi}^{\varpi^T}) = \Delta^p C(a_{\varpi}^{\varpi^T}) \]

under an invertible linear transformation \(T\):

\[
\begin{align*}
 x_1 &= \alpha_{11} x_1' + \alpha_{12} x_2' + \cdots + \alpha_{1, n+1} x_{n+1}' \\
 x_2 &= \alpha_{21} x_1' + \alpha_{22} x_2' + \cdots + \alpha_{2, n+1} x_{n+1}' \\
 & \vdots & \vdots & \vdots & \vdots \\
 x_{n+1} &= \alpha_{n1} x_1' + \alpha_{n2} x_2' + \cdots + \alpha_{n, n+1} x_{n+1}'
\end{align*}
\]

i.e., \(T = (\alpha_{ij})_{(n+1) \times (n+1)}\) \((\varpi^T)\), where \(\varpi^T\) denotes the transpose of vector \(\varpi\), \(a_{\bar{\varpi}}^{\varpi^T}\) is the coefficient of \(\varpi^T\) in \(P(x_1', x_2', \cdots, x_{n+1}')\) and \(\Delta = \det(\alpha_{ij})_{(n+1) \times (n+1)}\). Clearly, \(P(\varpi)\) is itself a covariant of weight 0 by definition.

The main interesting of this paper is in the combinatorially geometrical properties of systems consisting of homogenous polynomials, particularly, the case of \(n = 2\). In such a case, the subspace determined by \(P(x, y, z) = 0\) is called an algebraic curve \(C\) in \(\mathbb{P}^2 \mathbb{C}\). A point \((a, b, c)\) of a curve \(C\) in \(\mathbb{P}^2 \mathbb{C}\) defined by a homogenous polynomial \(P(x, y, z)\) is called singular if

\[\frac{\partial P}{\partial x}(a, b, c) = \frac{\partial P}{\partial y}(a, b, c) = \frac{\partial P}{\partial z}(a, b, c) = 0. \]

Denoted by \(\text{Sing}(P)\) all singular points in the curve \(C\) determined by \(P(x, y, z)\) and it is called non-singular if \(\text{Sing}(P) = \emptyset\). By the Noether’s result, we know that for any curve \(C\) determined by a homogenous polynomial \(P(x, y, z)\) of degree \(d\) in \(\mathbb{P}^2 \mathbb{C}\), there is a compact connected Riemann surface \(S\) such that

\[h : S - h^{-1}(\text{Sing}(C)) \rightarrow C - \text{Sing}(C) \]
is a homeomorphism with genus

\[g(S) = \frac{1}{2}(d-1)(d-2) - \sum_{p \in \text{Sing}(C)} \delta(p), \]

where \(\delta(p) \) is a positive integer associated with the singular point \(p \) in \(C \). Particularly, if \(\text{Sing}(C) = \emptyset \), i.e., \(C \) is non-singular then there is a compact connected Riemann surface \(S \) homeomorphism to \(C \) with genus \(\frac{1}{2}(d-1)(d-2) \).

For an integer \(m \geq 1 \), let \(M_1, M_2, \cdots, M_m \) be respectively dimensional \(n_1, n_2, \cdots, n_m \) manifolds in a Euclidean space. A finite combinatorial manifold is defined following.

Definition 1.1([10]) For manifolds \(M_1, M_2, \cdots, M_m \) with respectively dimensional \(n_1, n_2, \cdots, n_m \) in a topological space, where \(n \geq \max\{n_1, n_2, \cdots, n_m\}, m \geq 1 \) and \(0 < n_1 < n_2 < \cdots < n_m \), a finite combinatorial manifold \(\widetilde{M} \) of \(M_1, M_2, \cdots, M_m \) is the union \(\bigcup_{i=1}^{m} M_i \) underlying a topological graph \(G^L[\widetilde{M}] \) following:

\[V(G^L[\widetilde{M}]) = \{M_1, M_2, \cdots, M_m\}, \]

\[E(G^L[\widetilde{M}]) = \{(M_i, M_j)|M_i \cap M_j \neq \emptyset, 1 \leq i \neq j \leq m\} \] with a labeling

\[L : M_i \to L(M_i) = M_i \quad \text{and} \quad L : (M_i, M_j) \to L(M_i, M_j) = M_i \cap M_j \]

for integers \(1 \leq i \neq j \leq m \).

For example, let \(M_0 = \{(x, y, z)|x^2+y^2+z^2 = 1\} \), \(M_1 = \{(x, y, z)|(x-2)^2+y^2+z^2 = 1\} \), \(M_2 = \{(x, y, z)|(x+2)^2+y^2+z^2 = 1\} \), \(M_3 = \{(x, y, z)|x^2+(y-2)^2+z^2 = 1\} \), \(M_4 = \{(x, y, z)|x^2+y^2+(z+2)^2 = 1\} \), \(M_5 = \{(x, y, z)|x^2+y^2+(z-2)^2 = 1\} \) and \(M_6 = \{(x, y, z)|x^2+y^2+(z+2)(z-2) = 1\} \) be 7 spheres in \(\mathbb{R}^3 \). Notice that \(M_0 \cap M_1 = \{(1,0,0)\} \), \(M_0 \cap M_2 = \{(-1,0,0)\} \), \(M_0 \cap M_3 = \{(0,1,0)\} \), \(M_0 \cap M_4 = \{(0,-1,0)\} \), \(M_0 \cap M_5 = \{(0,0,1)\} \), \(M_0 \cap M_6 = \{(0,0,-1)\} \) and \(M_i \cap M_j = \emptyset \) for \(1 \leq i \neq j \leq 6 \). Whence, its topological graph is a wheel \(W_6 \) with labels such as those shown in Fig.1.

![Fig.1](image-url)
in \mathbb{R}^n. Now let

$$P_1(\mathbf{\tau}), P_2(\mathbf{\tau}), \cdots, P_m(\mathbf{\tau})$$

be m homogeneous polynomials in $n+1$ variables with coefficients in \mathbb{C} and each equation $P_i(\mathbf{\tau}) = 0$ determine a hypersurface M_i, $1 \leq i \leq m$ in \mathbb{R}^{n+1}, particularly, a curve C_i if $n = 2$. Then how can we characterize the system (ES_{m+1}^n)? and how can we determine its geometrical behaviors? In this paper, we characterize the system (ES_{m+1}^n), find its combinatorial invariants and answer these questions, particularly for $n = 2$ by a combinatorial approach and determine such a geometrical space is nothing else but a combinatorial Riemann surface \tilde{M} defined by Definition 1.1. Furthermore, we show such a combinatorial Riemann surface \tilde{M} is homeomorphic to a Riemann surface with genus determined in this paper.

§2. G^L-System of Homogeneous Polynomials in $n+1$ Variables

For two curves $P(x, y)$, $Q(x, y)$, particularly two lines in \mathbb{R}^2, if they are not intersect, we can always say that P, Q are parallel in terminology. Such a property enables one to classify the bundle of lines in \mathbb{R}^2 by that of parallel or not parallel. Notice that by the famous Bézout’s theorem, if $P(x, y, z)$, $Q(x, y, z)$ are two complex homogenous polynomials of degrees m, n and have no common components, then their curves determined by $P(x, y, z)$, $Q(x, y, z)$ have precisely mn intersection points counting multiplicities in $\mathbb{P}^2\mathbb{C}$ ([7]). Thus any two curves, particularly, lines in $\mathbb{P}^2\mathbb{C}$ intersect each other and there are no parallel subspace in projective space ([1]). However, denoted by $I(P, Q)$ the set of intersection points of homogenous polynomials $P(\mathbf{\tau})$ with $Q(\mathbf{\tau})$ in $n+1$ variables. We can also introduce the parallel hypersurfaces with degree ≥ 1 or not in $\mathbb{P}^n\mathbb{C}$ by distinguishing their intersections at infinite or not following.

Definition 2.1 Let $P(\mathbf{\tau}), Q(\mathbf{\tau})$ be two complex homogenous polynomials of degree d in $n+1$ variables. They are said to be parallel, denoted by $P \parallel Q$ if $d \geq 1$ and there are constants a, b, \cdots, c (not all zero) such that for $\forall \mathbf{\tau} \in I(P, Q)$, $ax_1 + bx_2 + \cdots + cx_{n+1} = 0$, i.e., all intersections of $P(\mathbf{\tau})$ with $Q(\mathbf{\tau})$ appear at a hyperplane on $\mathbb{P}^n\mathbb{C}$, or $d = 1$ with all intersections at the infinite $x_{n+1} = 0$. Otherwise, $P(\mathbf{\tau})$ are not parallel to $Q(\mathbf{\tau})$, denoted by $P \nparallel Q$.

For example, let $P(\frac{x}{z}, \frac{y}{z}, 1)z^m$ and $Q = P(\frac{x}{z}, \frac{y}{z}, 1)z^m + kz^m$ for integers $k, m \geq 1$. It is clear that their only intersection points appear at the infinite line $z = 0$. Thus they are parallel in $\mathbb{P}^2\mathbb{C}$ by Definition 2.1. The parallel property naturally enables one to introduce the underlying graph $G[ES_{m+1}^n]$ of (ES_{m+1}^n) following.

Definition 2.2 Let $P_1(\mathbf{\tau}), P_2(\mathbf{\tau}), \cdots, P_m(\mathbf{\tau})$ be homogenous polynomials in (ES_{m+1}^n).

Linfan Mao
Define a topological graph $G^L[ES_m^{n+1}]$ in \mathbb{C}^{n+1} by

$$V(G^L[ES_m^{n+1}]) = \{P_1(\mathbf{x}), P_2(\mathbf{x}), \ldots, P_m(\mathbf{x})\};$$

$$E(G^L[ES_m^{n+1}]) = \{(P_i(\mathbf{x}), P_j(\mathbf{x}))|P_i \parallel P_j, \ 1 \leq i, j \leq m\}$$

with a labeling

$$L : \ P_i(\mathbf{x}) \rightarrow P_i(\mathbf{x}), \ (P_i(\mathbf{x}), P_j(\mathbf{x})) \rightarrow I(P_i, P_j),$$

where $1 \leq i \neq j \leq m$. Such a system (ES_m^{n+1}) is called a G^L-system and the topological graph of $G^L[ES_m^{n+1}]$ without labels is called the underlying graph of G^L-system (ES_m^{n+1}), denoted by $G[ES_m^{n+1}]$.

Notice that the parallel property is symmetric and transitive. We can classify polynomials in (ES_m^{n+1}) by this property into classes $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l$ such that $P_i \parallel P_j$ if $P_i, P_j \in \mathcal{C}_k$ for an integer $1 \leq k \leq l$, where $1 \leq i \neq j \leq m$. Such a classification is parallel maximal if each \mathcal{C}_i is maximal for integers $1 \leq i \leq l$, i.e., for $\forall P \in \{P_k(\mathbf{x}), \ 1 \leq k \leq m\}\setminus \mathcal{C}_i$, there is a polynomial $Q(\mathbf{x}) \in \mathcal{C}_i$ such that $P \parallel Q$. Then we know the following result by definition.

Theorem 2.3 Let $n \geq 2$ be an integer. For a system (ES_m^{n+1}) of homogenous polynomials with a parallel maximal classification $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l$,

$$G[ES_m^{n+1}] \leq K(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l)$$

and with equality holds if and only if $P_i \parallel P_j$ and $P_i \nparallel P_j$ implies that $P_i \nparallel P_j$, where $K(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l)$ denotes a complete l-partite graphs.

Conversely, for any subgraph $G \leq K(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l)$, there are systems (ES_m^{n+1}) of homogenous polynomials with a parallel maximal classification $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l$ such that

$$G \simeq G[ES_m^{n+1}].$$

Proof Clearly, for any $P(\mathbf{x}), Q(\mathbf{x}) \in \mathcal{C}_k, \ 1 \leq k \leq l$, $P \parallel Q$ by definition. So $(P(\mathbf{x}), Q(\mathbf{x})) \notin E(G[ES_m^{n+1}])$, which implies that

$$G[ES_m^{n+1}] \leq K(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l).$$

Notice that the equality

$$G[ES_m^{n+1}] = K(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l)$$

holds implies that for $\forall P(\mathbf{x}) \in \mathcal{C}_i, Q(\mathbf{x}) \in \mathcal{C}_j$ with $1 \leq i \neq j \leq l$, there must be $P \parallel Q$, i.e., $P \parallel P_k$ if $P_k \parallel Q$. Conversely, if $P_k \parallel P_l$ and $P_l \parallel P_j$, then it is clear that for $\forall P(\mathbf{x}) \in \mathcal{C}_i, Q(\mathbf{x}) \in \mathcal{C}_j$ with $1 \leq i \neq j \leq l$, there must be $(P(\mathbf{x}), Q(\mathbf{x})) \in E(G[ES_m^{n+1}])$. Thus

$$G[ES_m^{n+1}] = K(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l).$$

Conversely, if $G \leq K(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_l)$, we construct a system (ES_m^{n+1}) following:
For \(\forall v \in V(G) \), choose homogenous polynomials \(P_v(\overline{x}) \) and \(P_u(\overline{x}) \) with \(P_u \parallel P_v \) if \((v,u) \in E(G)\), otherwise, \(P_u \nparallel P_v \) if \((v,u) \notin E(G)\).

Then it is clear that \(G \simeq G[ES^{n+1}] \) by definition. \(\square \)

Notice that for three hyperplanes \(P_1(\overline{x}), P_2(\overline{x}), P_3(\overline{x}) \), if \(P_1 \parallel P_2 \) and \(P_2 \parallel P_3 \), then there must be that \(P_1 \parallel P_3 \). By Theorem 2.3, we get the following conclusion.

Corollary 2.4 Let all polynomials in \((ES^{n+1}_m) \) be degree 1, i.e., hyperplanes with a parallel maximal classification \(\mathcal{C}_1, \mathcal{C}_2, \cdots, \mathcal{C}_l \), then

\[
G[ES^{n+1}] = K(\mathcal{C}_1, \mathcal{C}_2, \cdots, \mathcal{C}_l).
\]

For example, let the system \((ES^3_m) \) be consisted of polynomials \(P_1(x, y, z) = x - z \), \(P_2(x, y, z) = x - 2z \), \(P_3(x, y, z) = x - 3z \) and \(P_4(x, y, z) = y - z \), \(P_5(x, y, z) = y - 2z \), \(P_6(x, y, z) = y - 3z \). Then they are all lines in \(\mathbb{P}^2 \mathbb{R} \) with a figure and topological graph shown in Fig. 2.

Furthermore, we consider the existence of \(G^L \)-systems of homogenous polynomial for a topological graph \(G^L \) with labels following:

Problem 2.5 Let \(G^L \) be a topological graph with labels \(I(e) \in \mathbb{P}^n \mathbb{C} \) for \(\forall e \in E(G) \). Are there systems \((ES^{n+1}) \) of homogenous polynomials with \(G^L[ES^{n+1}_m] \simeq G^L \)?

The results following answer this question in case of \(n = 2 \), i.e., algebraic curves.

Theorem 2.6 Let \(n_1, n_2, \cdots, n_l \) be positive integers and let \(G^L \leq K(n_1, n_2, \cdots, n_l) \) be a topological graph with labels \(I(e) \) for \(\forall e \in E(G) \), where \(I(e) \subset \mathbb{P}^2 \mathbb{C} \) is a finite point set. Then

1. There always exists a system \((ES^3_m) \) of homogenous polynomials of degree

\[
d \geq -3 + \sqrt{9 + 8|I(e)|}
\]

with a maximal parallel classification \(\mathcal{C}_1, \mathcal{C}_2, \cdots, \mathcal{C}_l \) such that \(G[ES^3_m] \simeq G \) with \(|\mathcal{C}_i| = n_i \), \(1 \leq i \leq l \) and \(I(P_u, P_v) \supseteq I(e) \) for \(\forall e = (u,v) \in E(G) \).
Thus if

\[\mathbf{e} \]

with coefficients \((P_m, P_t) \) respectively find two distinct homogenous polynomials \(P \) which has \((\mathbf{e}, \mathbf{v}) \) or \((\mathbf{e}, \mathbf{w}) \) or \((\mathbf{e}, \mathbf{d}) \) with \(\det(M_3) = 0 \) and \((\mathbf{e}, \mathbf{w}) \) or \((\mathbf{e}, \mathbf{d}) \) with \(\det(M_6) = 0 \), where

\[M_3 = \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}, \quad M_6 = \begin{pmatrix} x_1^2 & y_1^2 & z_1^2 \\ x_2^2 & y_2^2 & z_2^2 \\ x_3^2 & y_3^2 & z_3^2 \\ x_2^3 & y_2^3 & z_2^3 \\ x_3^3 & y_3^3 & z_3^3 \\ x_1^4 & y_1^4 & z_1^4 \\ x_2^4 & y_2^4 & z_2^4 \\ x_3^4 & y_3^4 & z_3^4 \\ x_2^5 & y_2^5 & z_2^5 \\ x_3^5 & y_3^5 & z_3^5 \\ x_2^6 & y_2^6 & z_2^6 \\ x_3^6 & y_3^6 & z_3^6 \end{pmatrix}. \]

Proof Let \(e \in E(G) \). Notice that a homogenous polynomial of degree \(d \) is in the form

\[P(x, y, z) = \sum_{i+j+k=d} a_{ijk} x^i y^j z^k, \]

which has \(\frac{(d+1)(d+2)}{2} \) terms. Choose a new point \(p \in \mathbb{P}^2 \setminus I(e) \). If

\[\frac{(d+1)(d+2)}{2} \geq |I(e) \cup \{p\}| = |I(e)| + 1, \]

i.e.,

\[d \geq -3 + \frac{9 + 8|I(e)|}{2}, \]

there exists a homogenous polynomial \(P(x, y, z) \) passing through points in \(I(e) \cup \{p\} \) with coefficients \(a_{ijk}, i+j+k = d \) not all equal to zero by solving linear equations

\[\sum_{i+j+k=d} a_{ijk} x_0^i y_0^j z_0^k = 0, \quad (x_0, y_0, z_0) \in I(e). \]

Thus if \(e = (u, v) \in E(G) \), we can always choose \(p_u \neq p_v \in \mathbb{P}^2 \setminus I(e) \) and respectively find two distinct homogenous polynomials \(P_u(x, y, z), P_v(x, y, z) \) of degrees \(D, d \) passing through \(I(e) \cup \{p_u\}, I(e) \cup \{p_v\} \) such that \(I(P_u, P_v) \supseteq I(e) \).

Assuming \(u \in \mathcal{C}_i, 1 \leq i \leq l \). For \(\forall w \in \mathcal{C}_i, w \neq u \), let \(P_u(x, y, z) = P_u(x, y, z) + \lambda w z^d \), where \(\lambda w \) is a complex number. Then it is clear that all polynomials in \(\mathcal{C}_i, 1 \leq i \leq l \) are parallel.

Now let system \((ES_m^3) \) be consisted all of homogenous polynomials \(P_v(x, y, z), v \in V(G) \). Then such a system \((ES_m^3) \) is clearly with a maximal parallel classification \(\mathcal{C}_i, 1 \leq i \leq l \) such that \(|\mathcal{C}_i| = n_i, 1 \leq i \leq l \) and \(I(P_u, P_v) \supseteq I(e) \) for \(\forall e = (u, v) \in E(G) \) by construction. Thus we get the conclusion (1).

For (2), by noticing that

\[\frac{(D+1)(D+2)}{2} > D^2 \geq Dd, \quad \frac{(d+1)(d+2)}{2} > Dd. \]
if \((D, d) \in \{(1, 1), (1, 2), (2, 2), (3, 3)\}\) and
\[
\frac{(D + 1)(D + 2)}{2} > D^2 \geq Dd, \quad \frac{(d + 1)(d + 2)}{2} = Dd
\]
if \((D, d) = (3, 2)\) or \((3, 1)\). Thus the system of linear equations
\[
\sum_{i+j+k=D} a_{i,j,k}x_i^j y_i^j z_i^k = 0, \quad 1 \leq l \leq Dd
\]
and
\[
\sum_{i+j+k=d} b_{i,j,k}x_i^j y_i^j z_i^k = 0, \quad 1 \leq l \leq Dd
\]
have non-zero solutions \(a_{i,j,k}, b_{i,j,k}\) for \(i+j+k = D\) or \(d\) if \((D, d) \in \{(1, 1), (1, 2), (2, 2), (3, 3)\}\), or \((D, d) = (3, 1)\), \((I(e) = \{(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)\}\) with \(\det(M_3) = 0\), or \((D, d) = (3, 2)\), \((I(e) = \{(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4), (x_5, y_5, z_5), (x_6, y_6, z_6)\}\) with \(\det(M_6) = 0\) by linear algebra. Thus we can find homogenous polynomials \(P_u(x, y, z)\) and \(P_v(x, y, z)\) of degrees \(D, d\) such that \(I(P_u, P_v) = I(e)\). □.

The conclusion (2) in Theorem 2.6 implies the nine points theorem holds in the geometry of algebraic curves. Furthermore, we get the following conclusion.

Corollary 2.7 Let \(\mathcal{L}\) be a finite point set on projective algebraic curve \(P(x, y, z)\) of degree \(d \leq 3\) with \(|\mathcal{L}| = d^2\). Then there always exists a projective algebraic curve \(Q(x, y, z) \neq P(x, y, z)\) of degree \(d\) passing through points in \(\mathcal{L}\).

Corollary 2.7 partially answers Question 2.5 and enables one to get the following result.

Theorem 2.8 Let \(G^L\) be a topological graph with labels \(I(e) \subset \mathbb{P}^2\mathbb{C}\) on \(e \in E(G)\). If \(|I(e)| = d^2\) with \(d \leq 3\), then there are systems \((ES^3_m)\) of homogenous polynomials \(P_v(x, y, z)\) of degree \(d\) for \(\forall v \in V(G^L)\) such that \(G^L[ES^3_m] \simeq G^L\).

The inverse of Bézout’s theorem is not true in general. For example, let \(p_1, p_2, \ldots, p_d\) be \(d\) points on a projective algebraic curve \(P(x, y, z)\) of degree \(d\), which are not collinear. Clearly, there are no lines \(Q(x, y, z)\) passing through all points \(p_1, p_2, \ldots, p_d\). But the Bézout’s theorem immediately implies the result following, which is useful for constructing systems \((ES^3_m)\) underlying topological graphs \(G^L[ES^3_m]\).

Theorem 2.9 Let \(P_1(x, y, z), P_2(x, y, z), \ldots, P_k(x, y, z), Q_1(x, y, z), Q_2(x, y, z), \ldots, Q_l(x, y, z)\) be homogenous polynomials for integers \(k, l \geq 1\). Then there are homogenous polynomials \(P(x, y, z), Q(x, y, z)\) such that
\[
I(P, Q) = \bigcup_{1 \leq i \leq k, 1 \leq j \leq l} I(P_i, P_j).
\]
Proof Clearly, \(I(P_i, P_j) \neq \emptyset \) for integers \(1 \leq i \leq k, 1 \leq j \leq l \) by Bézout’s theorem. Define
\[
P(x, y, z) = \prod_{i=1}^{k} P_i(x, y, z) \quad \text{and} \quad Q(x, y, z) = \prod_{i=1}^{l} Q_i(x, y, z).
\]

Applying Bézout’s theorem, we then know that
\[
I(P, Q) = \bigcup_{1 \leq i \leq k, 1 \leq j \leq l} I(P_i, P_j).
\]

Then we have a criterion for a topological graph \(G^L \) being that an underlying graph of system \((ES^3_m) \) following.

Theorem 2.10 Let \(G^L \) be a topological graph labeled with \(I(e) \) for \(\forall e \in E(G^L) \). Then there is a system \((ES^3_m) \) of homogenous polynomials such that \(G^L[ES^3_m] \simeq G^L \) if and only if there are homogenous polynomials \(P_{vi}(x, y, z), 1 \leq i \leq \rho(v) \) for \(\forall v \in V(G^L) \) such that
\[
I(e) = I(P_u, P_v) = I(\prod_{i=1}^{\rho(u)} P_{ui}, \prod_{i=1}^{\rho(v)} P_{vi})
\]
for \(e = (u, v) \in E(G^L) \), where \(\rho(v) \) denotes the valency of vertex \(v \) in \(G^L \).

Proof If \((ES^3_m) \) is a system of homogenous polynomials \(P_v, v \in V(G^L) \) such that
\(G^L[ES^3_m] \simeq G^L \), for \(\forall v \in V(G^L) \) let \(P_{v_1} = P_v \) and \(P_{v_i} = 1 \) for integers \(2 \leq i \leq \rho(v) \). Then, by definition 2.2 we know that
\[
I(e) = I(P_{u}, P_v) = I(\prod_{i=1}^{\rho(u)} P_{ui}, \prod_{i=1}^{\rho(v)} P_{vi})
\]
for \(\forall e = (u, v) \in E(G^L) \).

Conversely, if there are homogenous polynomials \(P_{vi}(x, y, z), 1 \leq i \leq \rho(v) \) for \(\forall v \in V(G^L) \) such that
\[
I(e) = I(\prod_{i=1}^{\rho(u)} P_{ui}, \prod_{i=1}^{\rho(v)} P_{vi})
\]
for \(e = (u, v) \in E(G^L) \), let
\[
L : v \rightarrow \prod_{i=1}^{\rho(v)} P_{vi}(x, y, z) = P_v(x, y, z)
\]
for \(\forall v \in V(G^L) \). Then the system \((ES^3_m) \) consisting of homogenous polynomials \(P_{vi}(x, y, z), v \in V(G^L) \) is such a system with the conclusion holds. In fact, the identity mapping \(1_G : v \in V(G^L) \rightarrow v \in V(G^L) \) is such an isomorphism with
\[
I(e) = I(\prod_{i=1}^{\rho(u)} P_{ui}, \prod_{i=1}^{\rho(v)} P_{vi}) = I(P_u, P_v)
\]
for $e = (u, v) \in E(G^L)$. Thus, $G^L[ES^3_m] \simeq G^L$.

Choosing each $P_i(x, y, z), 1 \leq i \leq \rho(v)$ in Theorem 2.10 being line, we get a special conclusion following.

Corollary 2.11 Let p_{ij} be the intersection point of lines L^j_i with L^j_d for integers $1 \leq i \leq D$, $1 \leq j \leq d$ in $\mathbb{P}^2 \mathbb{C}$ and $I = \{p_{ij}, 1 \leq i \leq D, 1 \leq j \leq d\}$. Then there are homogenous polynomials $P(x, y, z)$ of degree D and $Q(x, y, z)$ of degree d such that $I(P, Q) = I$.

§3. **Automorphisms of G^L-System of Homogenous Polynomials in $n + 1$ Variables**

Classifying isomorphic systems (ES^m_{n+1}) enables one to introduce isomorphic covariants on homogenous polynomials following.

Definition 3.1 Let $(^1ES^m_{n+1})$ and $(^2ES^m_{n+1})$ be systems respectively consisting of covariants $C_i^1(a_\overline{\pi}, \overline{\pi}), C_i^2(a_\overline{\pi}, \overline{\pi})$ on homogenous polynomials $P_i(\overline{\pi})$ for integers $1 \leq i \leq m$. If there is an invertible linear transformation T such that for all $C_i^1(a_\overline{\pi}, \overline{\pi}) \in (^1ES^m_{n+1})$, there is $C_i^2(a_\overline{\pi}, \overline{\pi}) \in (^2ES^m_{n+1})$ with

$$C_i^2(a^T_\overline{\pi}, \overline{\pi}) = \Delta C_i^1(a_\overline{\pi}, \overline{\pi})$$

holds for integers $1 \leq i \leq m$, where Δ is a constant, then the system $(^2ES^m_{n+1})$ is said to be linear isomorphic to system $(^1ES^m_{n+1})$, denoted by $(^1ES^m_{n+1}) \overset{T}{\simeq} (^2ES^m_{n+1})$, where Δ is the determinant of T.

Notice that a homogenous polynomial $P(\overline{\pi})$ is itself a covariant of weight 0. Whence, a system (ES^m_{n+1}) consisting of homogenous polynomials $P_i(\overline{\pi}), 1 \leq i \leq m$ is itself a covariant system by definition. For example, let the systems $(^1ES_3^3)$ be

$$\begin{cases}
6x^2 + 19y^2 + 18z^2 + 20x y + 14y z + 32yz \\
10x^2 + 33y^2 + 14z^2 + 37xy + 33yz + 53yz \\
x^1 + 3y^2 + 4z^2 + 4xy + 5xz + 7yz
\end{cases}$$

and let $(^2ES_3^3)$ be

$$\begin{cases}
x^2 + y^2 + z^2 \\
2xy + yz \\
xz
\end{cases}$$

Then $(^1ES_3^3) \overset{T}{\simeq} (^2ES_3^3)$ because there is an invertible linear transformation

$$T: \begin{cases}
x = x' + y' + z' \\
y = 2x' + 3y' + z' \\
z = x' + 3y' + 4z'
\end{cases}$$

such that $(^1ES_3^3)$ is transformed to $(^2ES_3^3)$ under the transformation T. The following result shows that $G^L[ES^m_{n+1}]$ is an invariant on isomorphic systems (ES^m_{n+1}).

Theorem 3.2 Let \((1^ES_m^{n+1}), (2^ES_m^{n+1})\) be systems consisting of covariants \(C_i^1(a_{\overline{\sigma}}, \overline{\tau})\), \(C_i^2(a_{\overline{\sigma}}, \overline{\tau})\) on homogenous polynomials \(P_i(\overline{\tau})\) for integers \(1 \leq i \leq m\) of weight \(p\), respectively. Then \((1^ES_m^{n+1}) \xrightarrow{T} (2^ES_m^{n+1})\) if and only if \(G^L[1^ES_m^{n+1}] \xrightarrow{T} G^L[2^ES_m^{n+1}]\) and for any integer \(i\), \(1 \leq i \leq m\), \(C_i^2(a_{\overline{\sigma}'}, \overline{\tau}) = \Delta^p C_i^1(a_{\overline{\sigma}}, \overline{\tau})\) holds for a constant \(p\), where \(\Delta\) is the determinant of \(T\).

Proof If \((1^ES_m^{n+1}) \xrightarrow{T} (2^ES_m^{n+1})\), we show \(T\) is an isomorphism between topological graphs \(G^L[1^ES_m^{n+1}]\) and \(G^L[2^ES_m^{n+1}]\). In fact, \(T : V(G^L[1^ES_m^{n+1}]) \rightarrow V(G^L[2^ES_m^{n+1}])\) is \(1 - 1\) and onto by definition. Notice that a hyperplane is transferred to a hyperplane by a linear transformation on \(\mathbb{P}^n\mathbb{C}\). Thus, \(C^T_u \parallel C^T_v\) in \((2^ES_m^{n+1})\) if and only if \(C_u \parallel C_v\) in \((1^ES_m^{n+1})\), which implies that \((C^T_u, C^T_v) \in E(G^L[2^ES_m^{n+1}])\) if and only if \((C_u, C_v) \in E(G^L[1^ES_m^{n+1}])\), i.e., \(G^L[1^ES_m^{n+1}] \simeq G^L[2^ES_m^{n+1}]\). Clearly, \(I(C^T_u, C^T_v) = T(I(C_u, C_v))\) for \(\forall (C_u, C_v) \in E(G^L[1^ES_m^{n+1}])\). Consequently, the linear transformation \(T : V(G^L[1^ES_m^{n+1}]) \rightarrow V(G^L[2^ES_m^{n+1}]), \quad E(G^L[1^ES_m^{n+1}]) \rightarrow E(G^L[2^ES_m^{n+1}])\)

is commutative with that of labeling \(L\), i.e., \(T \circ L = L \circ T\), i.e., \(G^L[1^ES_m^{n+1}] \xrightarrow{T} G^L[2^ES_m^{n+1}]\).

By assumption, \(C_i^1(a_{\overline{\sigma}}, \overline{\tau})\) is a covariant on homogenous polynomials \(P_i(\overline{\tau})\) for integers \(1 \leq i \leq m\). Let \(T : C_i^1(a_{\overline{\sigma}}, \overline{\tau}) \rightarrow C_i^2(a_{\overline{\sigma}'}, \overline{\tau})\). Then \(C_i^2(a_{\overline{\sigma}'}, \overline{\tau}) = C_i^2(a_{\overline{\sigma}}, \overline{\tau}) = \Delta^p C_i^1(a_{\overline{\sigma}}, \overline{\tau})\) for integers \(1 \leq i \leq m\), where \(p\) is a constant.

Notice that
\[
(1^ES_m^{n+1}) = \{C_i^1(a_{\overline{\sigma}}, \overline{\tau}) | v \in V(G^L[1^ES_m^{n+1}])\}, \\
(2^ES_m^{n+1}) = \{C_i^2(a_{\overline{\sigma}'}, \overline{\tau}) | u \in V(G^L[2^ES_m^{n+1}])\}.
\]

If \(G^L[1^ES_m^{n+1}] \xrightarrow{T} G^L[2^ES_m^{n+1}]\) with \(C_i^2(a_{\overline{\sigma}'}, \overline{\tau}) = \Delta^p C_i^1(a_{\overline{\sigma}}, \overline{\tau})\) holds for a constant \(p\), let \(T = [\alpha_{ij}]_{(n+1)\times(n+1)}\). Then \(T\) must be a linear isomorphism between systems \((1^ES_m^{n+1})\) and \((2^ES_m^{n+1})\). In fact, for \(\forall C_i^1(a_{\overline{\sigma}}, \overline{\tau}) \in (1^ES_m^{n+1})\), let \(T : C_i^1(a_{\overline{\sigma}}, \overline{\tau}) \rightarrow C_i^2(a_{\overline{\sigma}'}, \overline{\tau}) \in (2^ES_m^{n+1})\). Then \(C_i^2(a_{\overline{\sigma}'}, \overline{\tau}) = \Delta^p C_i^1(a_{\overline{\sigma}}, \overline{\tau})\). Consequently, \((1^ES_m^{n+1}) \xrightarrow{T} (2^ES_m^{n+1})\) by definition.

\[\square\]

Theorem 3.2 enables one immediately knowing the following result.

Corollary 3.3 Let \((ES_m^{n+1})\) be a system consisting of covariants \(C_i^1(a_{\overline{\sigma}}, \overline{\tau})\) on homogenous polynomials \(P_i(\overline{\tau})\) for integers \(1 \leq i \leq m\) of weight \(p\) and \(T\) be an invertible linear transformation. Then

\[G^L[ES_m^{n+1}] \simeq G^L[T^k(ES_m^{n+1})]\]

for any integer \(k\).

Particularly, let \(p = 0\), i.e., \((ES_m^{n+1})\) consisting of homogenous polynomials \(P_1(\overline{\tau}), P_2(\overline{\tau}), \cdots, P_m(\overline{\tau})\) in Theorem 3.2. Then it also implies the following conclusion.
Corollary 3.4 Let \((1ES_m^{n+1}), (2ES_m^{n+1})\) be systems of homogenous polynomials \(P_i(\overline{\tau}), 1 \leq i \leq m\). Then \((1ES_m^{n+1}) \cong (2ES_m^{n+1})\) if and only if \(G^L[1ES_m^{n+1}] \cong G^L[2ES_m^{n+1}]\) with \(T\) an invertible linear transformation on \(\mathbb{P}^n\mathbb{C}\).

Furthermore, if \((1ES_m^{n+1}) = (2ES_m^{n+1}) = (ES_m^{n+1})\) in Definition 3.1, a linear isomorphism is called an automorphism of \((ES_m^{n+1})\). Clearly, all automorphisms of \((ES_m^{n+1})\) form a group \(\text{Aut}[ES_m^{n+1}]\) under the composition operation, which can be determined following.

Theorem 3.5 Let \((ES_m^{n+1})\) be a covariant system of \(C_i(a_{m, \overline{x}}), 1 \leq i \leq m\) of weight \(p\) on homogenous polynomials \(P_1(\overline{x}), P_2(\overline{x}), \cdots, P_m(\overline{x})\) for an integer \(n \geq 1\). Then

\[
\text{Aut}[ES_m^{n+1}] = \left\{ \text{Aut}G^L; \bigcap_{v \in V(H)} \text{Aut}(C_v) : H^L \leq G^L[ES_m^{n+1}] \right\} \cap \text{PGL}(n),
\]

where \(H^L \leq G^L\), \(\text{Aut}(C_v)\) denote respectively an induced topological subgraph \(H\) of graph \(\mathcal{G}\) with labeling \(L\) on \(G^L\) and automorphism group of covariant \(C_v(a_{m, \overline{x}})\) at vertex \(v\).

Proof Let \((ES_m^{n+1})\) be a covariant system of \(C_i(a_{m, \overline{x}}), 1 \leq i \leq m\) of weight \(p\) on homogenous polynomials \(P_1(\overline{x}), P_2(\overline{x}), \cdots, P_m(\overline{x})\) for an integer \(n \geq 1\) with an invertible linear isomorphism \(T: (ES_m^{n+1}) \to (ES_m^{n+1})\) such that \(C_v^T = C_v\) for all \(v \in V(H)\), where \(H \leq G[ES_m^{n+1}]\). Clearly, if \(H = \emptyset\), then \(T \in \text{Aut}G^L[ES_m^{n+1}]\). Now if \(H \neq \emptyset\), by Theorem 3.2 there must be \(T: G^L[ES_m^{n+1}] \to G^L[ES_m^{n+1}] \to H^L\) with \(T \subseteq \bigcap_{v \in V(H)} \text{Aut}(C_v)\). Thus

\[
\text{Aut}[ES_m^{n+1}] \subseteq \left\{ \text{Aut}G^L; \bigcap_{v \in V(H)} \text{Aut}(C_v) : H^L \leq G^L[ES_m^{n+1}] \right\} \cap \text{PGL}(n).
\]

Conversely, such linear transformations \(\omega\) are indeed automorphisms of system \((ES_m^{n+1})\). In fact, let

\[
\omega: C_v \to C_v, \quad v \in V(H^L), \quad V^L(G[ES_m^{n+1}] - H) \to V^L(G[ES_m^{n+1}] - H)
\]

be an invertible linear transformation. Then, \(T \in \text{Aut}[ES_m^{n+1}]\). Thus

\[
\text{Aut}[ES_m^{n+1}] \supseteq \left\{ \text{Aut}G^L; \bigcap_{v \in V(H)} \text{Aut}(C_v) : H^L \leq G^L[ES_m^{n+1}] \right\} \cap \text{PGL}(n). \quad \square
\]

Particularly, let \(p = 0\). We get the automorphism group of system \((ES_m^{n+1})\) of homogenous polynomials following.

Corollary 3.6 Let \((ES_m^{n+1})\) be a system of homogenous polynomials \(P_1(\overline{x}), P_2(\overline{x}), \cdots, P_m(\overline{x})\) for an integer \(n \geq 1\). Then

\[
\text{Aut}[ES_m^{n+1}] = \left\{ \text{Aut}G^L; \bigcap_{v \in V(H)} \text{Aut}(P_v(\overline{x})) : H^L \leq G^L[ES_m^{n+1}] \right\} \cap \text{PGL}(n).
\]
For example, let \((ES^3_4) = \{(P_1(x, y, z) = a_1x + b_1y + c_1z, 1 \leq i \leq 4)\}\) be 4 distinct homogenous polynomials of degree 1, such as those shown in Fig.3.

\[
\begin{align*}
K^L_4 - \{(P_1, P_4)\} & \\
K^L_{1,3} & \\
x + y + z & x + y + 2z & x + 2y + z & x + 2yc + z & x + 4y + z & x + y + z + 2zx + y + 3z
\end{align*}
\]

Fig.3

According to the ratio of coefficients, \(G[ES^3_4]\) and \(\text{Aut}[ES^3_4]\) are listed in Table 1 following,

<table>
<thead>
<tr>
<th>Case</th>
<th>Ratio</th>
<th>(G[ES^3_4])</th>
<th>(\text{Aut}[ES^3_4])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a_1 : b_1 \neq a_2 : b_2 \neq a_3 : b_3 \neq a_4 : b_4)</td>
<td>(K_4)</td>
<td>(S_{(P_1, P_2, P_3, P_4)})</td>
</tr>
<tr>
<td>2</td>
<td>(a_1 : a_2 : a_3 : a_4 = b_1 : b_2 : b_3 : b_4)</td>
<td>(K_4)</td>
<td>(S_{(P_1, P_2, P_3, P_4)})</td>
</tr>
<tr>
<td>3</td>
<td>(a_1 : a_2 : a_3 = b_1 : b_2 : b_3, \neq a_4 : b_4)</td>
<td>(K_{1,3})</td>
<td>(S_{(P_1, P_2, P_3, P_4)})</td>
</tr>
<tr>
<td>4</td>
<td>(a_1 : a_2 = b_1 : b_2, \neq a_3 : b_3, \neq a_4 : b_4)</td>
<td>(C_4, K_4 - {(P_1, P_2)})</td>
<td>(S_{(P_1, P_2, P_3, P_4)})</td>
</tr>
</tbody>
</table>

Table 1

where \(S_{(P_1, P_2, P_3, P_4)}\) denotes the symmetric group on \(P_1, P_2, P_3, P_4\) and the last column is obtained by the four lines lemma in algebraic geometry. Clearly, \(\text{Aut}K^L_4 = \text{Aut}C^L_4 = S_{(P_1, P_2, P_3, P_4)}, \langle(P_1 P_2)(P_3 P_4), (P_1 P_3)\rangle = S_{(P_1, P_2, P_3, P_4)}, \langle S_{P_1, P_2, P_3, (P_1 P_4)\rangle = S_{(P_1, P_2, P_3, P_4)}\). Thus, \(\text{Aut}[ES^3_4] \simeq S_4\), a finite group. It should be noted that \(\text{Aut}[ES^m_4]\) maybe not finite. But if it is indeed finite, a natural inverse question is the following:

Problem 3.7 Let \(H \leq \text{PGL}(n)\) be a finite group. Is there a finite system \((ES^m_4)\) of homogenous polynomials with \(\text{Aut}[ES^m_4] \simeq H\)?

The answer for this question is positive. Thus

Theorem 3.8 For any finite subgroup \(H \leq \text{PGL}(n)\), there always exists a finite system \((ES^m_4)\) of homogenous polynomials with \(\text{Aut}[ES^m_4] \simeq H\).

Proof Let \(P(\overline{x})\) be a homogenous polynomial in \(n + 1\) variables and system \((ES^m_4) = \{P^h(\overline{x}), \forall h \in H\}\). Clearly, \(P^h(\overline{x}) \neq P^g(\overline{x})\) for \(\forall h, g \in H\) if \(h \neq g\). Notice that \(H\) is finite. Thus \(m < \infty\), i.e., a finite system \((ES^m_4)\). Clearly, \(H \leq \text{Aut}[ES^m_4]\) by definition. If \(\text{Aut}[ES^m_4] \neq H\), let \(\theta \in \text{Aut}[ES^m_4] \setminus H\), then there must be \(P^h(\overline{x}) \in (ES^m_4)\). By the construction of \((ES^m_4)\), there is an element \(h \in H\) such that \(P^h(\overline{x}) = P^h(\overline{x})\), i.e., \(\theta \in H\), a contradiction. \(\square\)

The topological graph \(G^L[ES^m_4]\) of system \((ES^m_4)\) constructed in the proof of Theorem 3.8 is dependent on \(P(\overline{x})\) and group \(H\). For example, let \(P(\overline{x}) = x_1\) and
the invertible matrix for $\forall h \in H$ is $[\alpha^{h}_{ij}]_{(n+1) \times (n+1)}$. Then

$$P^{h}(\overline{x}) = \alpha^{h}_{11}x_1 + \alpha^{h}_{12} + \cdots + \alpha^{h}_{1,n+1}x_{n+1}.$$

Thus,

$$\emptyset \neq P^{h}(\overline{x}) \cap P(\overline{x}) \subset \{(0, x_2, \cdots, x_{n+1}), \ x_i \in \mathbb{C}, \ 2 \leq i \leq n + 1\}$$

and $P^{h} \parallel P^{g}$ if and only if

$$\frac{\alpha^{h}_{11}}{\alpha^{g}_{11}} = \frac{\alpha^{h}_{12}}{\alpha^{g}_{12}} = \cdots = \frac{\alpha^{h}_{1n+1}}{\alpha^{g}_{1n+1}} \neq \frac{\alpha^{h}_{1n}}{\alpha^{g}_{1n}}$$

for $h, g \in H$. Consequently,

$$V(\mathrm{G}[ES^{n+1}_{m}]) = \{x^{h}_{1}, \ h \in H\}$$

$$E(\mathrm{G}[ES^{n+1}_{m}]) = \{(x^{h}_{1}, x^{q}_{1}), \ h, g \in H \text{ without } \frac{\alpha^{h}_{11}}{\alpha^{g}_{11}} = \frac{\alpha^{h}_{12}}{\alpha^{g}_{12}} = \cdots = \frac{\alpha^{h}_{1n+1}}{\alpha^{g}_{1n+1}} \neq \frac{\alpha^{h}_{1n}}{\alpha^{g}_{1n}}\}$$

with a labeling

$$L: x^{h}_{1} \to x^{h}_{1} \text{ and } (x^{h}_{1}, x^{q}_{1}) \to x^{h}_{1} \bigcap x^{q}_{1}, \ h, g \in H.$$

\section{Topology on G^{L}-Systems of Homogeneous Polynomials in $n + 1$ Variables}

Let $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^{n}\mathbb{C}$ determined by $\pi(x_1, x_2, \cdots, x_{n+1}) = [x_1, x_2, \cdots, x_{n+1}]$ be the projection from $\mathbb{C}^{n+1} \setminus \{0\}$ to $\mathbb{P}^{n}\mathbb{C}$, where $[x_1, x_2, \cdots, x_{n+1}]$ is the homogenous coordinates for points in $\mathbb{P}^{n}\mathbb{C}$. Clearly, the equation $P(\overline{x}) = 0$ determines a smooth function $x_{n+1} = f(x_1, x_2, \cdots, x_n)$ by the implicit theorem if $P(\overline{x})$ is homogenous. It is easily to verify that the subspace $\Gamma[f]$ defined by

$$\Gamma[f] = \{(x_1, x_2, \cdots, x_{n+1}) \in \mathbb{C}^{n+1}: x_{n+1} = f(x_1, x_2, \cdots, x_n), x_i \in \mathbb{C}, 1 \leq i \leq n\}$$

is a complex n-manifold, i.e., a hypersurface in \mathbb{C}^{n+1} and $\pi: \Gamma[f] \in \mathbb{C}^{n+1} \to \pi(\Gamma[f]) \in \mathbb{P}^{n}\mathbb{C}$ is a bijection. Thus $\pi(\Gamma[f])$ is a hypersurface in $\mathbb{P}^{n}\mathbb{C}$.

Generally, let (ES^{n+1}_{m}) be a G^{L}-system of homogenous polynomials $P(\overline{x}_1), P(\overline{x}_2), \cdots, P(\overline{x}_m)$ in $n + 1$ variables with respectively hypersurfaces $S_i = \pi(\Gamma[f_i])$, where f_i is the implicit function $x_{n+1} = f_i(x_1, x_2, \cdots, x_n)$ determined by $P_i(\overline{x}) = 0$ and let $\widetilde{M} = \bigcup_{i=1}^{m} M_i$ with $M_i = \Gamma[f_i]$ for integers $1 \leq i \leq m$. Clearly, for $\forall p \in \widetilde{M}$, there is an open neighborhood $U(p)$ homeomorphic to \mathbb{C}^n, \widetilde{M} is Hausdorff and second countable if $m < \infty$. Thus \widetilde{M} is also an n-manifold and $\pi: \widetilde{M} \to \widetilde{S}$ is $1 - 1$ by definition. We get a result following.

\textbf{Theorem 4.1} Let (ES^{n+1}_{m}) be a G^{L}-system consisting of homogenous polynomials $P(\overline{x}_1), P(\overline{x}_2), \cdots, P(\overline{x}_m)$ in $n + 1$ variables with respectively hypersurfaces $S_i = \pi(\Gamma[f_i])$, where f_i is the implicit function $x_{n+1} = f_i(x_1, x_2, \cdots, x_n)$ determined by $P_i(\overline{x}) = 0$ and let $\widetilde{M} = \bigcup_{i=1}^{m} M_i$ with $M_i = \Gamma[f_i]$ for integers $1 \leq i \leq m$. Clearly, for $\forall p \in \widetilde{M}$, there is an open neighborhood $U(p)$ homeomorphic to \mathbb{C}^n, \widetilde{M} is Hausdorff and second countable if $m < \infty$. Thus \widetilde{M} is also an n-manifold and $\pi: \widetilde{M} \to \widetilde{S}$ is $1 - 1$ by definition. We get a result following.
Let \(S_1, S_2, \ldots, S_m \) be a combinatorial surface consisting of \(m \) orientable surfaces \(S_1, S_2, \ldots, S_m \) underlying a topological graph \(G^L[S] \). Then

\[
\beta(G(\tilde{S})) = g(\tilde{S}) + \sum_{i=1}^{m} (-1)^{i+1} \left[g(S_{k_1} \cap \cdots \cap S_{k_i}) - c(S_{k_1} \cap \cdots \cap S_{k_i}) + 1 \right],
\]

where \(g(S_{k_1} \cap S_{k_2} \cap \cdots \cap S_{k_i}) \) and \(c(S_{k_1} \cap S_{k_2} \cap \cdots \cap S_{k_i}) \) are respectively the genus and number of path-connected components in surface \(S_{k_1} \cap S_{k_2} \cap \cdots \cap S_{k_i} \), \(\beta(G(\tilde{S})) \) is the Betti number of topological graph \(G(\tilde{S}) \).

Proof\ The proof is by induction on \(m \). If \(m = 2 \), by the classification theorem of surfaces, we assume \(S_1 \) is a connected sum \(T^2 \# T^2 \# \cdots \# T^2 \) of \(g(S_i) \) toruses for \(1 \leq i \leq m \). By this geometrical model, the contribution of genus of surfaces \(S_2 \) to \(S_1 \) clearly is

\[
g(\tilde{S}) = g(S_2) - g(S_1 \cap S_2) + c(S_1 \cap S_2) - 1
\]

because these \(c(S_1 \cap S_2) \) path-connected components contribute \(c(S_1 \cap S_2) - 1 \) new tori to \(S_1 \) and \(\beta(G(\tilde{S})) = 0 \) in this case. Whence,

\[
g(S_1 \cup S_2) = g(S_1) + g(S_2) - g(S_1 \cap S_2) + c(S_1 \cap S_2) - 1.
\]
Thus the conclusion holds with \(m = 2 \).

Now assume the conclusion holds with \(m \leq s \). Notice that

\[
\bar{S} = \bigcup_{i=1}^{s+1} S_i = \left(\bigcup_{i=1}^{s} S_i \right) \bigcup S_{s+1}.
\]

Applying the inclusion-exclusion principle and the contribution of new tori by path-connected components in their intersection, the contribution of genus of surface \(S_{s+1} \) to the combinatorial surface \(\left(\bigcup_{i=1}^{s} S_i \right) \) is

\[
g(S_{s+1}) - \sum_{S_{k_1} \cap \cdots \cap S_{k_l} \neq \emptyset} (-1)^i \left[g \left(S_{s+1} \cap \left(S_{k_1} \cap S_{k_2} \cap \cdots \cap S_{k_l} \right) \right) \right]
- c \left(S_{s+1} \cap \left(S_{k_1} \cap S_{k_2} \cap \cdots \cap S_{k_l} \right) \right) + 1 \] + loops of \(S_{s+1} \) with \(S_1, S_2, \ldots, S_s \).

Whence,

\[
g(\bar{S}) = g(\bar{S} \setminus S_{s+1}) + \text{loops of } S_{s+1} \text{ with } \bar{S} \setminus S_{s+1}
= g(\bar{S} \setminus S_{s+1}) + g(S_{s+1}) - \sum_{S_{k_1} \cap \cdots \cap S_{k_l} \neq \emptyset} (-1)^i \left[g \left(S_{s+1} \cap \left(S_{k_1} \cap \cdots \cap S_{k_l} \right) \right) \right]
- c \left(S_{s+1} \cap \left(S_{k_1} \cap \cdots \cap S_{k_l} \right) \right) + 1 \] + loops of \(S_{s+1} \) with \(S_1, S_2, \ldots, S_s \)

\[
= \beta(G(\bar{S} \setminus S_{s+1}))
+ \sum_{i=1}^{m} (-1)^{i+1} \sum_{S_{k_1} \cap \cdots \cap S_{k_l} \neq \emptyset} \left[g \left(S_{k_1} \cap \cdots \cap S_{k_l} \right) - c \left(S_{k_1} \cap \cdots \cap S_{k_l} \right) + 1 \right]
+ g(S_{s+1}) + \sum_{1 \leq k_1, \ldots, k_i \leq s} (-1)^{i+1} \left[g \left(S_{s+1} \cap \left(S_{k_1} \cap \cdots \cap S_{k_i} \right) \right) \right]
- c \left(S_{s+1} \cap \left(S_{k_1} \cap \cdots \cap S_{k_i} \right) \right) + 1 \] + loops of \(S_{s+1} \) with \(S_1, S_2, \ldots, S_s \)

\[
= \beta(G(\bar{S}))
+ \sum_{i=1}^{s+1} (-1)^{i+1} \sum_{S_{k_1} \cap \cdots \cap S_{k_i} \neq \emptyset} \left[g \left(S_{k_1} \cap \cdots \cap S_{k_i} \right) - c \left(S_{k_1} \cap \cdots \cap S_{k_i} \right) + 1 \right].
\]

Thus, the conclusion holds also with \(m = s + 1 \). \(\square \)

Corollary 4.3 Let \(\bar{S} \) be a combinatorial surface consisting of orientable surfaces \(S_1, S_2, \ldots, S_m \) with \(S_{k_1} \cap \cdots \cap S_{k_i} \) path-connected or empty for integers \(1 \leq k_1, k_2, \ldots, k_i \leq m \). Then

\[
g(\bar{S}) = \beta(G(\bar{S})) + \sum_{i=1}^{m} (-1)^{i+1} \sum_{S_{k_1} \cap \cdots \cap S_{k_i} \neq \emptyset} g \left(S_{k_1} \cap \cdots \cap S_{k_i} \right).
\]
Furthermore, if $S_{k_1} \cap \cdots \cap S_{k_i}$ is simply-connected or empty for any integers k_1, k_2, \ldots, k_i, then

$$g(\tilde{S}) = \beta(G(\tilde{S})) + \sum_{i=1}^{m} g(S_i).$$

Proof Notice that for integers $1 \leq k_1, k_2, \ldots, k_i \leq m$, if $S_{k_1} \cap \cdots \cap S_{k_i}$ path-connected, then $c(S_{k_1} \cap \cdots \cap S_{k_i}) = 1$ and if $S_{k_1} \cap \cdots \cap S_{k_i}$ is simply-connected, then $g(S_{k_1} \cap \cdots \cap S_{k_i}) = 0$. According to Theorem 4.2, this conclusion follows. □

Theorem 4.2 enables one to determine the genus of surface \tilde{S} by applying Noether’s formula in algebraic geometry, particularly, the non-singular case. Notice that the Bézout’s theorem claims that the number of intersection points counting multiplicities of two projective curves C_1, C_2 in $\mathbb{P}^2\mathbb{C}$ is $|I(P, Q)| = \deg(P)\deg(Q)$ if they are determined by $P(x, y, z)$ and $Q(x, y, z)$ without common component. Thus, if S_i is the normalizations of C_i for $1 \leq i \leq 2$, then surfaces S_1 and S_2 are tangent each other at $\deg(P)\deg(Q)$ points. Applying Theorem 4.2 and Corollary 4.3, we get the genus of the normalization \tilde{S} of complex curves C_1, C_2, \ldots, C_m following.

Theorem 4.4 Let C_1, C_2, \ldots, C_m be complex curves determined by homogenous polynomials $P_1(x, y, z), P_2(x, y, z), \ldots, P_m(x, y, z)$ without common component, and let

$$R_{P_i, P_j} = \prod_{k=1}^{\deg(P_i)\deg(P_j)} (e_{k}^{ij} z - b_{k}^{ij} y)^{e_{k}^{ij}}, \quad \omega_{i,j} = \sum_{k=1}^{\deg(P_i)\deg(P_j)} \sum_{e_{k}^{ij} \neq 0} 1$$

be the resultant of $P_i(x, y, z), P_j(x, y, z)$ for $1 \leq i \neq j \leq m$. Then there is an orientable surface \tilde{S} in \mathbb{R}^3 of genus

$$g(\tilde{S}) = \beta(G(\tilde{C})) + \sum_{i=1}^{m} \left(\frac{(\deg(P_i) - 1)(\deg(P_i) - 2)}{2} - \sum_{p^i \in \text{Sing}(C_i)} \delta(p^i) \right)$$

$$+ \sum_{1 \leq i \neq j \leq m} (\omega_{i,j} - 1) + \sum_{i \geq 3} \sum_{c_{k_1} \cap \cdots \cap c_{k_i} \neq \emptyset} \left[c \left(C_{k_1} \cap \cdots \cap C_{k_i} \right) - 1 \right]$$

with a homeomorphism $\varphi : \tilde{S} \rightarrow \tilde{C} = \bigcup_{i=1}^{m} C_i$. Furthermore, if C_1, C_2, \ldots, C_m are non-singular, then

$$g(\tilde{S}) = \beta(G(\tilde{C})) + \sum_{i=1}^{m} \left(\frac{(\deg(P_i) - 1)(\deg(P_i) - 2)}{2} \right)$$

$$+ \sum_{1 \leq i \neq j \leq m} (\omega_{i,j} - 1) + \sum_{i \geq 3} \sum_{c_{k_1} \cap \cdots \cap c_{k_i} \neq \emptyset} \left[c \left(C_{k_1} \cap \cdots \cap C_{k_i} \right) - 1 \right],$$

where

$$\delta(p^i) = \frac{1}{2} \left(I_{p^i} \left(P_i, \frac{\partial P_i}{\partial y} \right) - \nu_{0}(p^i) + |\pi^{-1}(p^i)| \right)$$
is a positive integer with a ramification index \(\nu_\phi(p^i) \) for \(p^i \in \text{Sing}(C_i) \), \(1 \leq i \leq m \).

Proof This result is an immediately consequence of Theorem 4.2 and Noether’s result. For its genus, let \(S_i \) be the normalization of \(C_i \), i.e., \(\varphi_i : S_i \rightarrow C_i \) in \(\mathbb{R}^3 \) for integers \(1 \leq i \leq m \) and \(\tilde{S} = \bigcup_{i=1}^{m} S_i \). Define \(\varphi : \tilde{S} \rightarrow \tilde{C} \) by \(\varphi(p) = \varphi_i(p) \) if \(p \in S_i \), \(1 \leq i \leq m \). This definition is well-defined because if \(p \in \bigcap S_{k_1} \cdots \bigcap S_{k_l} \), then \(\varphi(p) \in \bigcap C_{k_1} \bigcap \cdots \bigcap C_{k_l} \).

Notice that each \(\varphi_i \) is a homeomorphism. Thus \(\varphi \) is also a homeomorphism from \(\tilde{S} \) to \(\tilde{C} \), i.e., a normalization of surface to \(\bigcup_{i=1}^{m} C_i \) with \(G(\tilde{S}) \simeq G(\tilde{C}) \).

Clearly, \(C_{k_1} \bigcap \cdots \bigcap C_{k_l} \) only consists of isolated points. Whence, \(g(S_{k_1} \bigcap \cdots \bigcap S_{k_l}) = 0 \) for any subset \(\{k_1, \cdots, k_l\} \subset \{1, 2, \cdots, m\} \) with \(i \geq 2 \) and

\[
\sum_{1 \leq i \neq j \leq m} \left[c \left(S_i \bigcap S_j \right) - 1 \right] = \sum_{1 \leq i \neq j \leq m} \left[c \left(C_i \bigcap C_j \right) - 1 \right] = \sum_{1 \leq i \neq j \leq m} (\omega_{i,j} - 1),
\]

if \(C_{k_1} \bigcap \cdots \bigcap C_{k_l} \neq \emptyset \). Substituting the Noether’s formula into Theorem 4.2, we get that

\[
g(\tilde{S}) = \beta(G(\tilde{S})) + \sum_{i=1}^{m} (-1)^{i+1} \sum_{C_{k_1} \bigcap \cdots \bigcap C_{k_i} \neq \emptyset} \left[g(S_{k_1} \bigcap \cdots \bigcap S_{k_i}) - c(S_{k_1} \bigcap \cdots \bigcap S_{k_i}) - 1 \right] \]

\[
= \beta(G(\tilde{C})) + \sum_{i=1}^{m} g(C_i) + \sum_{i \geq 2} \sum_{C_{k_1} \bigcap \cdots \bigcap C_{k_i} \neq \emptyset} \left[c(C_{k_1} \bigcap \cdots \bigcap C_{k_i}) - 1 \right] \]

\[
= \beta(G(\tilde{C})) + \sum_{i=1}^{m} \frac{(\text{deg}(P_i) - 1)(\text{deg}(P_i) - 2)}{2} - \sum_{P^i \in \text{Sing}(C_i)} \delta(p^i) + \sum_{1 \leq i \neq j \leq m} (\omega_{i,j} - 1) + \sum_{i \geq 3} (-1)^{i} \sum_{C_{k_1} \bigcap \cdots \bigcap C_{k_i} \neq \emptyset} \left[c(C_{k_1} \bigcap \cdots \bigcap C_{k_i}) - 1 \right]. \quad \square
\]

Theorem 4.4 enables us to get consequences following.

Corollary 4.5 Let \(C_1, C_2, \cdots, C_m \) be complex non-singular curves determined by homogeneous polynomials \(P_1(x, y, z), P_2(x, y, z), \cdots, P_m(x, y, z) \) without common component, any intersection point \(p \in I(P_i, P_j) \) with multiplicity \(e_p \) and

\[
\begin{align*}
\left\{ \begin{array}{l}
P_i(x, y, z) = 0 \\
P_j(x, y, z) = 0, \quad \forall i, j \in \{1, 2, \cdots, m\} \\
P_k(x, y, z) = 0
\end{array} \right.
\end{align*}
\]
has zero-solution only. Then the genus of normalization \widetilde{S} of curves C_1, C_2, \cdots, C_m is
\[
g(\widetilde{S}) = 1 + \frac{1}{2} \sum_{i=1}^{m} \deg(P_i) (\deg(P_i) - 3) + \sum_{1 \leq i \neq j \leq m} \omega_{i,j}.
\]
Particularly, if $e_p^{ij} = 1$ for $\forall p \in I(P_i, P_j)$, $1 \leq i \neq j \leq m$, then
\[
g(\widetilde{S}) = 1 + \frac{1}{2} \sum_{i=1}^{m} \deg(P_i) (\deg(P_i) - 3) + \sum_{1 \leq i \neq j \leq m} \deg(P_i) \deg(P_j).
\]

Proof Notice that $G \langle \tilde{C} \rangle \simeq K_m$ with
\[
\beta(K_m) = \frac{m(m+1)}{2} - m + 1 \quad \text{and} \quad C_{k_1} \cap \cdots \cap C_{k_i} = \emptyset, \ i \geq 3
\]
by assumption. Applying Theorem 4.4, we know that
\[
g(\tilde{S}) = \beta(G \langle \tilde{C} \rangle) + \sum_{i=1}^{m} \frac{(\deg(P_i) - 1)(\deg(P_i) - 2)}{2}
\]
\[
+ \sum_{1 \leq i \neq j \leq m} (\omega_{i,j} - 1) + \sum_{i \geq 3} (-1)^i \sum_{\omega_{i,j} \neq 0} \left[c \left(C_{k_1} \cap \cdots \cap C_{k_i} \right) - 1 \right]
\]
\[
= \beta(K_m) + \sum_{i=1}^{m} \frac{(\deg(P_i) - 1)(\deg(P_i) - 2)}{2} + \sum_{1 \leq i \neq j \leq m} (\omega_{i,j} - 1)
\]
\[
= 1 + \frac{1}{2} \sum_{i=1}^{m} \deg(P_i) (\deg(P_i) - 3) + \sum_{1 \leq i \neq j \leq m} \omega_{i,j}.
\]
Particularly, if $e_p^{ij} = 1$ for $\forall p \in I(P_i, P_j)$, then $\omega_{i,j} = \deg(P_i) \deg(P_j)$ by Bézout’s theorem for integers $1 \leq i \neq j \leq m$, we get that
\[
g(\tilde{S}) = 1 + \frac{1}{2} \sum_{i=1}^{m} \deg(P_i) (\deg(P_i) - 3) + \sum_{1 \leq i \neq j \leq m} \deg(P_i) \deg(P_j). \quad \square
\]

Corollary 4.6 Let C_1, C_2, \cdots, C_m be complex non-singular curves determined by homogenous polynomials $P_1(x, y, z), P_2(x, y, z), \cdots, P_m(x, y, z)$ without common component and $C_i \cap C_j = \bigcap_{i=1}^{m} C_i$ with $\bigcap_{i=1}^{m} C_i = \kappa > 0$ for integers $1 \leq i \neq j \leq m$. Then the genus of normalization \tilde{S} of curves C_1, C_2, \cdots, C_m is
\[
g(\tilde{S}) = g(\tilde{S}) = (\kappa - 1)(m - 1) + \sum_{i=1}^{m} \frac{(\deg(P_i) - 1)(\deg(P_i) - 2)}{2}.
\]

Proof Notice that $G \langle \tilde{S} \rangle \simeq S_{1,m+1}$ with $\beta(S_{1,m+1}) = 0$, $\omega_{i,j} = \kappa$ for integers
\[1 \leq i \neq j \leq m \text{ and}\
\sum_{1 \leq i \neq j \leq m} (\omega_{i,j} - 1) + \sum_{i \geq 3} (-1)^i \sum_{C_{k_1} \cap \cdots \cap C_{k_i} \neq \emptyset} \left[c \left(C_{k_1} \cap \cdots \cap C_{k_i} \right) - 1 \right]\
= \sum_{i \geq 2} (-1)^i (\kappa - 1) \left(\frac{m}{i} \right) = (\kappa - 1)(m - 1).\]

Applying Theorem 4.4, we get that
\[g(\tilde{S}) = (\kappa - 1)(m - 1) + \sum_{i=1}^{m} \left(\deg(P_i) - 1 \right) \left(\deg(P_i) - 2 \right).\]

For homogenous polynomials with small degrees, Theorem 4.4 also enables one to get interesting conclusions.

Corollary 4.7 Let \(L_1, L_2, \cdots, L_m\) be distinct lines in \(\mathbb{P}^2\mathbb{C}\) with respective normalizations of spheres \(S_1, S_2, \cdots, S_m\). Then there is a normalization of surface \(\tilde{S}\) of \(L_1, L_2, \cdots, L_m\) with genus \(\beta(\langle \tilde{L} \rangle)\). Particularly, if \(\langle \tilde{L} \rangle\) is a tree, then \(\tilde{S}\) is homeomorphic to a sphere.

Corollary 4.8 Let \(C_1, C_2, \cdots, C_m\) be non-singular conics determined by homogenous polynomials \(P_1(x, y, z), P_2(x, y, z), \cdots, P_m(x, y, z)\) of degree 2 without common component in \(\mathbb{P}^2\mathbb{C}\) and let \(S_1, S_2, \cdots, S_m\) be respective normalizations of surfaces conics \(C_1, C_2, \cdots, C_m\). Then there is a normalization surface \(\tilde{S}\) in of genus
\[g(\langle \tilde{S} \rangle) = \beta(\langle \tilde{C} \rangle) + \sum_{i \geq 2} (-1)^i \sum_{C_{k_1} \cap \cdots \cap C_{k_i} \neq \emptyset} \left[c \left(C_{k_1} \cap \cdots \cap C_{k_i} \right) - 1 \right]\
\text{with} \quad c(C_{k_1} \cap \cdots \cap C_{k_i}) \leq 4 \text{ for integers } C_{k_1} \cap \cdots \cap C_{k_i} \neq \emptyset.\]

Particularly, if no 3 conics of \(C_1, C_2, \cdots, C_m\) pass through a common point, then
\[g(\langle \tilde{S} \rangle) = \beta(\langle \tilde{C} \rangle) + \sum_{1 \leq i \neq j \leq m} \omega_{i,j} - \left(\frac{m}{2} \right).\]

§5. Application to Elliptic Differential Equations

As we known, a Dirichlet problem on Laplace equation is to find functions \(u(\mathbf{x})\) in a region \(D \subset \mathbb{R}^n\) with
\[
\left\{ \begin{array}{l}
\Delta u = 0, \quad \mathbf{x} \in D \\
u \mid_{\partial D} = \varphi(\mathbf{x})
\end{array} \right.
\]
holds, where
\[\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2}.\]
If $D \subset \mathbb{R}^n$ is nothing else but a ball B^n and $\varphi(\bar{x})$ is continuous for $\|\bar{x}\| = a$, the Poisson’s integral formula (\cite{3})

$$u(\bar{\xi}) = \int_{\|\bar{x}\|=a} \frac{1}{2a \sqrt{\pi}} \frac{1}{\Gamma\left(\frac{1}{2}\right)} \frac{a^2 - \|\bar{\xi}\|^2}{\|\bar{x} - \bar{\xi}\|^n} \varphi(\bar{x}) dS$$

provides the solution of Dirichlet problem. Particularly, if $n = 2$, we get

$$u(\rho, \theta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{a^2 - \rho^2}{a^2 + \rho^2 - 2a \rho \cos(\theta - \alpha)} \varphi(\alpha) d\alpha$$
in spherical coordinates (ρ, θ).

Let $\varphi_1(\bar{x}), \varphi_2(\bar{x}), \ldots, \varphi_m(\bar{x})$ be m respective continuous functions, particularly, m homogenous polynomials for $\|\bar{x}\| = a$. A natural question on the Laplace equation is that whether a system of

$$\begin{align*}
\Delta u &= 0, & \bar{x} \in D \\
u |_{\partial D} &= \varphi_i(\bar{x})
\end{align*} \quad \{1 \leq i \leq m\}$$

is solvable or not?

We consider a special case of $D = B^n$ and denote by $\Phi(\varphi_1, n), \Phi(\varphi_2, n), \ldots, \Phi(\varphi_m, n)$ the hypersurfaces respectively determined by $x_{n+1} = \varphi_i(\bar{x})$ in \mathbb{R}^{n+1} with a topological graph $G\left(\bar{\Phi}\right)$. Then such a question can be also viewed as the Dirichlet problem on the Laplace equation prescribed with a boundary value $G\left(\bar{\Phi}\right)$ with $\bar{\Phi} = \bigcup_{i=1}^m \Phi(\varphi_i, n)$.

Similarly, let $S(\varphi_1, n), S(\varphi_2, n), \ldots, S(\varphi_m, n)$ be hypersurfaces determined by $x_{n+1} = u(\bar{x})$ in \mathbb{R}^{n+1} with a topological graph $G\left(\bar{S}\right)$. By a geometrical view, such a system $(PDES^D_m)$ is solvable if

$$\bigcap_{i=1}^m S(\varphi_i, n) \neq \emptyset.$$

Otherwise, non-solvable in classical meaning.

However, \bar{S} and $\bar{\Phi}$ are both n-manifold in \mathbb{R}^n by Theorem 4.1 and there is a bijection $\tau : G\left(\bar{\Phi}\right) \rightarrow G\left(\bar{S}\right)$. Thus, it is also meaningful for knowing the solution behaviors of Laplace equation by generalizing solution in classical meaning to G^L-solutions of systems $(PDES^D_m)$ following.

Definition 5.1 A G^L-solution of system $(PDES^D_m)$ is such an n-manifold \bar{S} consisting of hypersurfaces $S(\varphi_1, n), S(\varphi_2, n), \ldots, S(\varphi_m, n)$ underlying a topological graph $G\left(\bar{S}\right)$ in \mathbb{R}^{n+1}.

Then, all of the previous discussions implies an interesting conclusion following.
Theorem 5.2 Let $\tilde{\Phi}$ be a $G\langle \tilde{\Phi} \rangle$-system consisting of continuous functions $\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \ldots, \varphi_m(\mathbf{x})$ for $\|\mathbf{x}\| = a$. Then the system $(PDES^D_m)$ of the Dirichlet problem on Laplace equation prescribed with boundary value $\tilde{\Phi}$ is G^L-solvable.

Particularly, if $n = 2$ with $\bigcap_{i=1}^{m} \varphi_i(\theta) \neq \emptyset$, we get a surface consisting of m surfaces $S(\varphi_1, n), S(\varphi_2, n), \ldots, S(\varphi_m, n)$ in \mathbb{R}^3 with genus determined by Theorem 4.2.

References

Received: March 14, 2014