On Semi-invariant Submanifolds of a Nearly Sasakian Manifold with a Quarter Symmetric Non-metric Connection

Lovejoy S. Das

Department of Mathematics
New Philadelphia, OH 44663

Mobin Ahmad and Abdul Haseeb

Department of Mathematics
Integral University
Kursi Road, Lucknow-226026, India

Copyright © 2014 Lovejoy S. Das, Mobin Ahmad and Abdul Haseeb. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We define a quarter symmetric non-metric connection in a nearly Sasakian manifold and we study semi-invariant submanifolds of a nearly Sasakian manifold endowed with a quarter symmetric non-metric connection. Moreover, we discuss the integrability of distributions on semi-invariant submanifolds.

Mathematics Subject Classification: 53D25, 53D12, 53C05

Keywords: semi-invariant Submanifolds, nearly Sasakian manifolds, quarter symmetric non-metric connection, Gauss and Weingarten equations, Integrability conditions, distributions

1. Introduction

In [1], A. Bejancu and N. Papaghiuc studied Semi-invariant submanifolds in Sasakian manifolds. The notion of nearly Sasakian manifold was introduced by
Blair et al. in [4]. CR-submanifolds of nearly Sasakian manifolds were studied by M. H. Shahid in [7]. In [8] M. Shahid studied properties of semi-invariant submanifolds of a nearly Sasakian manifold. Das et al. studied semi-invariant submanifolds of a nearly Sasakian manifold with a semi-symmetric non-metric connection in [5]. In this paper we study semi-invariant submanifolds of a nearly Sasakian manifold with a quarter symmetric non-metric connection.

Let ∇ be a linear connection in an n-dimensional differentiable manifold M. The Tensor T and the Curvature tensor R of ∇ are given respectively by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y].$$

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

The connection ∇ is symmetric if torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇ is metric connection if there is a Riemannian metric g in M such that $\nabla g = 0$, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if it is the Levi-Civita connection.

In [6], S. Golab introduced the idea of quarter symmetric linear connection. A linear connection ∇ is said to be quarter symmetric connection if its torsion tensor T is of the form

$$T(X,Y) = \eta(Y)\phi X - \eta(X)\phi Y$$

In [9], Mobin Ahmad et. al. studied some properties of hypersurfaces of an almost $r-$ paracontact Riemannian manifold with quarter symmetric metric connection.

The Paper is organized as follows: In section 2, we give a brief introduction of nearly Sasakian manifold. In section 3, we show that the induced connection on a semi-invariant submanifolds of a nearly Sasakian manifold with a quarter symmetric non-metric connection is also a quarter symmetric non-metric. In section 4, we established some lemmas on semi-invariant submanifolds and in the last section we discussed the integrability conditions of distributions of semi-invariant submanifolds of a nearly Sasakian manifold with quarter symmetric non-metric connection.

2. Preliminaries

Let \bar{M} be $(2m + 1)$ - dimensional almost contact metric manifold [3] with a metric tensor g, a tensor field ϕ of type (1,1), a vector field ξ, a 1-form η which satisfies

$$\phi^2 = -I + \eta \otimes \xi, \phi \xi = 0, \eta \phi = 0, \eta(\xi) = 1 (2.1)$$
On semi-invariant submanifolds of a nearly Sasakian manifold

\[g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \tag{2.2} \]

for any vector fields \(X , Y \) on \(\bar{M} \). If in addition to the condition for an almost contact metric structure we have \(d\eta(X, Y) = g(X, \phi Y) \), the structure is said to be a contact metric structure.

The almost contact metric manifold \(\bar{M} \) is called a nearly Sasakian manifold if it satisfies the condition [4]

\[(\bar{\nabla}_X \phi)(Y) + (\bar{\nabla}_Y \phi)(X) = \eta(Y)X + \eta(X)Y - 2g(X, Y)\xi \tag{2.3} \]

where \(\bar{\nabla} \) denotes the Riemannian connection with respect to \(g \). If, moreover, \(M \) satisfies

\[(\bar{\nabla}_X \phi)(Y) = -g(X, Y)\xi + \eta(Y)X, \bar{\nabla}_X \xi = \phi X \tag{2.4} \]

then it is called Sasakian manifold [3]. Thus every Sasakian manifold is nearly-Sasakian. The converse statement fails in general [4].

Definition : [2] An \(n \)-dimensional Riemannian submanifold \(M \) of a nearly Sasakian manifold \(\bar{M} \) is called a semi-invariant submanifold if \(\xi \) is tangent to \(M \) and there exists on \(M \) a pair of orthogonal distribution \((D, D^\perp) \) such that

1. \(TM = D \oplus D^\perp \oplus \{\xi\} \)
2. the distribution \(D \) is invariant under \(\phi \), that is \(\phi D_x = D_x \), for all \(x \in M \),
3. the distribution \(D^\perp \) is anti-invariant under \(\phi \), that is \(\phi D^\perp_x \subset T^\perp_x M \), for all \(x \in M \), where \(T_x M \) and \(T^\perp_x M \) are the tangent space of \(M \) at \(x \).

The distribution \(D \) (resp. \(D^\perp \)) is called the horizontal (resp. vertical distribution). A semi-invariant submanifold \(M \) is said to be an invariant (resp. anti-invariant) submanifold if we have \(D^\perp_x = \{0\} \) (resp. \(D_x = \{0\} \)) for each \(X \in M \). We also call \(M \) proper if neither \(D \) nor \(D^\perp \) is null. It is easy to check that each hypersurface of \(M \) which is tangent to \(\xi \) inherits a structure of semi-invariant submanifold of \(\bar{M} \).

A quarter symmetric non-metric connection \(\bar{\nabla} \) is defined as

\[\bar{\nabla}_X Y = \bar{\nabla}_X Y + \eta(Y)\phi X \tag{2.5} \]

such that \((\bar{\nabla}_X g)(Y, Z) = -\eta(Y)g(\phi X, Z) - \eta(Z)g(\phi X, Y) \)

for any \(X, Y \in TM \), where \(\bar{\nabla} \) is induced connection on \(M \).

From (2.4) and (2.5), we have

\[(\bar{\nabla}_X \phi)(Y) = -g(X, Y)\xi + 2\eta(Y)X - \eta(X)\eta(Y)\xi \tag{2.6} \]

\[(\bar{\nabla}_X \phi)(Y) + (\bar{\nabla}_Y \phi)(X) = -2g(Y, X)\xi + 2\eta(Y)X \tag{2.7} \]

\[+ 2\eta(X)Y - 2\eta(X)\eta(Y)\xi \]
and
\[\nabla_X \xi = 2\phi X \], (2.8)

We denote by \(g \) the metric tensor of \(\bar{M} \) as well as that induced on \(M \).

Theorem 2.1. The connection induced on semi-invariant submanifolds of a nearly-Sasakian manifold with quarter symmetric non-metric connection is also a quarter symmetric non-metric connection.

Proof: Let \(\nabla \) be the induced connection with respect to unit normal \(N \) on semi-invariant submanifolds of Sasakian manifold from quarter symmetric non-metric connection \(\bar{\nabla} \), then
\[\bar{\nabla}_X Y = \nabla_X Y + m(X, Y), \quad (2.9) \]

where \(m \) is a tensor field of type \((0, 2)\) on semi-invariant submanifold \(M \). If \(\nabla^* \) be the induced connection on semi-invariant submanifolds from Riemannian connection \(\bar{\nabla} \), then
\[\nabla^*_X Y = \nabla^*_X Y + h(X, Y), \quad (2.10) \]

where \(h \) is a second fundamental tensor satisfying
\[h(\bar{X}, \bar{Y}) = h(\bar{Y}, \bar{X}) = g(H(\bar{X}), \bar{Y}) \], (2.11)

By the definition of quarter symmetric non-metric connection
\[\nabla_X Y = \nabla^*_X Y + \eta(Y)\phi X \], (2.12)

Now using above equations, we have
\[\nabla_X Y + m(X, Y) = \nabla^*_X Y + h(X, Y) + \eta(Y)\phi X \]

Equating tangential and normal components from both the sides, we get
\[h(X, Y) = m(X, Y) \]

and
\[\nabla_X Y = \nabla^*_X Y + \eta(Y)\phi X. \]

Thus \(\nabla \) is also a quarter symmetric non-metric connection.

Now, Gauss equation for a semi-invariant submanifolds of a nearly Sasakian manifold with a quarter symmetric non-metric connection is
\[\bar{\nabla}_X Y = \nabla_X Y + h(X, Y) \], (2.13)
and Weingarten formulas for M is given by

$$\tilde{\nabla}_X N = -A_N X + a\phi X + \nabla^\perp_X N (2.14)$$

where $a = \eta(N)$ is a function on M, for $X,Y \in TM, N \in T^\perp M, h$ (resp. A_N) is the second fundamental form (resp. tensor) of M in \tilde{M} and ∇^\perp denotes the operator of the normal connection. Moreover, we have

$$g(h(X,Y), N) = g(A_N X,Y). (2.15)$$

For any vector X tangent to M is given as

$$X = PX + QX + \eta(X)\xi (2.16)$$

where PX and QX belong to the distribution D and D^\perp respectively.

For any vector field N normal to M, we put

$$\phi N = BN + CN (2.17)$$

where BN (resp. CN) denotes the tangential (resp. normal) component of ϕN.

Definition: A semi-invariant submanifold is said to be mixed totally geodesic if $h(X,Z) = 0$ for all $X \in D$ and $Z \in D^\perp$.

The Nijenhuis tensor $N(X,Y)$ for quarter symmetric non-metric connection is defined as

$$N(X,Y) = (\tilde{\nabla}_{\phi X} \phi)(Y) - (\tilde{\nabla}_{\phi Y} \phi)(X) - \phi(\tilde{\nabla}_X \phi)(Y) + \phi(\tilde{\nabla}_Y \phi)(X) (2.18)$$

for any $X,Y \in T\tilde{M}$.

From (2.7), we have

$$(\tilde{\nabla}_{\phi X} \phi)(Y) = -2g(\phi X,Y)\xi + 2\eta(Y)\phi X - (\tilde{\nabla}_Y \phi)\phi X (2.19)$$

Also,

$$(\tilde{\nabla}_Y \phi)\phi X = ((\tilde{\nabla}_Y \eta)(X))\xi + 2\eta(X)\phi Y - \phi(\tilde{\nabla}_Y \phi)X (2.20)$$

Now using (2.20) in (2.19), we have

$$(\tilde{\nabla}_{\phi X} \phi)(Y) = -2g(\phi X,Y)\xi + 2\eta(Y)\phi X - ((\tilde{\nabla}_Y \eta)(X))\xi (2.21)$$

$$-2\eta(X)\phi Y + \phi(\tilde{\nabla}_Y \phi)X$$

By virtue of (2.21) and (2.18), we get

$$N(X,Y) = -4\phi(\tilde{\nabla}_X \phi)Y - 4\phi h(X,\phi Y) - 4h(Y, X) (2.22)$$

$$+8\eta(Y)\phi X - 2g(\phi X,Y)\xi$$

for any $X,Y \in T\tilde{M}$.
3. Basic Lemmas

Lemma 3.1. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M} with quarter symmetric non-metric connection, then

$$2(\bar{\nabla}_X \phi)Y = \nabla_X \phi Y - \nabla_Y \phi X + h(X, \phi Y) - h(Y, \phi X) - \phi [X, Y] - 2g(X, Y)\xi$$

Proof: The proof of this lemma is similar to lemma 2.1 in [7].

Similar computations also yields

Lemma 3.2. Let M be a semi-invariant submanifold of a nearly Sasakian manifold with quarter symmetric non-metric connection, then

$$2(\bar{\nabla}_X \phi)Y = -A_{\phi Y}X + \nabla_X^\perp \phi Y - \nabla_Y \phi X - h(Y, \phi X) - \phi [X, Y]$$

for any $X \in D$ and $Y \in D^\perp$.

Lemma 3.3. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M} with quarter symmetric non-metric connection, then

$$P\nabla_X \phi PY + P\nabla_Y \phi PX - PA_{\phi QY}X - PA_{\phi QX}Y = 2\eta(Y)PX(3.1)$$

$$+2\eta(X)PY + \phi P\nabla_X Y + \phi P\nabla_Y X$$

$$Q\nabla_X \phi PY + Q\nabla_Y \phi PX - QA_{\phi QY}X - QA_{\phi QX}Y = 2\eta(Y)QX(3.2)$$

$$+2\eta(X)QY + 2Bh(X, Y)$$

$$h(X, \phi PY) + h(Y, \phi PX) + \nabla_X^\perp \phi QY + \nabla_Y^\perp \phi QX = 2Ch(X, Y)(3.3)$$

$$+\phi Q\nabla_X Y + \phi Q\nabla_Y X$$

$$\eta(\nabla_X \phi PY + \nabla_Y \phi PX - A_{\phi QY}X - A_{\phi QX}Y) = -2g(X, Y)\xi(3.4)$$

$$+2\eta(X)\eta(Y)\xi,$$

for all $X, Y \in TM$.

Proof: Differentiating (2.16) covariantly and using (2.13) and (2.14), we have

$$(\bar{\nabla}_X \phi)Y + \phi (\nabla_X Y) + \phi h(X, Y) = P\nabla_X (\phi PY) + Q\nabla_X (\phi PY)(3.5)$$

$$+\eta(\nabla_X \phi PY)\xi - PA_{\phi QY}X - QA_{\phi QY}X$$
On semi-invariant submanifolds of a nearly Sasakian manifold

\[-\eta(A_{\phi QY}X)\xi + \nabla^\perp_X \phi QY + h(X, \phi PY).\]

Similarly,

\[
(\bar{\nabla}_Y \phi)X + \phi(\nabla_Y X) + \phi h(Y, X) = P\nabla_Y (\phi PX) + Q\nabla_Y (\phi PX) (3.6)
\]

\[+\eta(\nabla_Y \phi PX)\xi - PA_{\phi QX}Y - QA_{\phi QX}Y\]

\[-\eta(\phi QX Y)\xi + \nabla^\perp_Y \phi QX + h(Y, \phi PX)\]

Adding (3.5) and (3.6), we have

\[(\bar{\nabla}_X \phi)Y + (\bar{\nabla}_Y \phi)X + \phi(\nabla_X Y + \nabla_Y X) + 2\phi h(Y, X) = P\nabla_X (\phi PY) (3.7)\]

\[+P\nabla_Y (\phi PX) + Q\nabla_Y (\phi PX) - PA_{\phi QY}X + QA_{\phi QY}X - QA_{\phi QY}X\]

\[-Q A_{\phi QX}Y + \nabla^\perp_X \phi QY - PA_{\phi QX}Y + \nabla^\perp_Y \phi QX + h(Y, \phi PX) + h(X, \phi PY)\]

\[+\eta(\nabla_X \phi PY)\xi + \eta(\nabla_Y \phi PX)\xi - \eta(A_{\phi QY}X)\xi - \eta(A_{\phi QY}X)\xi\]

Now using (2.7) and (2.17) in above equation, we get

\[-2g(X, Y)\xi + 2\eta(Y)PX + 2\eta(Y)QX + 2\eta(X)PY + 2\eta(X)QY + \phi P\nabla_X Y (3.8)\]

\[+\phi Q\nabla_X Y + \phi P\nabla_Y X + \phi Q\nabla_Y X + 2Bh(Y, X) + 2Ch(Y, X)\]

\[+2\eta(X)\eta(Y)\xi = P\nabla_X (\phi PY) + P\nabla_Y (\phi PX) + Q\nabla_X (\phi PX)\]

\[-PA_{\phi QY}X + QA_{\phi QY}X - QA_{\phi QY}X\]

\[\nabla^\perp_X \phi QY - PA_{\phi QX}Y + \nabla^\perp_Y \phi QX + h(Y, \phi PX)\]

\[+h(X, \phi PY) + \eta(\nabla_X \phi PY)\xi + \eta(\nabla_Y \phi PX)\xi\]

\[-\eta(A_{\phi QX}Y)\xi - \eta(A_{\phi QY}X)\xi\]

Equations (3.1) to (3.4) follows by comparison of tangential, normal and vertical parts.
Definition: The horizontal distribution D is said to be parallel with respect to the connection ∇ on M if $\nabla_X Y \in D$ for all vector fields $X, Y \in D$.

Proposition 3.4. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M} with quarter symmetric non-metric connection. If the horizontal distribution D is parallel then $h(X, \phi Y) = h(Y, \phi X)$, for all $X, Y \in D$.

Proof: After similar computations to proposition 2.4 in [7], proposition follows.

Lemma 3.5. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M} with quarter symmetric non-metric connection, then M is mixed totally geodesic if and only if $A_N X \in D$, for all $X \in D$.

Proof: The proof of the lemma is similar as in lemma 2.5 in [7].

Proposition 3.6. Let M be a mixed totally geodesic semi-invariant submanifold of a nearly Sasakian manifold \bar{M} with quarter symmetric non-metric connection. Then the normal section $N \in \phi D^\perp$ is D parallel if and only if $\nabla_X \phi N \in D$, for all $X \in D$.

Proof: Let $N \in \phi D^\perp$, then from (2.7) $(\bar{\nabla}_X \phi)N = 0$ and by hypothesis we have $h(X, \phi N) = 0$.

$$\nabla_X (\phi N) = (\nabla_X \phi)(N) + \phi(\nabla_X N)$$

$$\nabla_X (\phi N) = \phi(\nabla_X N - A_N X)$$

But $A_N X \in D$ so $\nabla_X N = 0$ if and only if $\nabla_X \phi N \in D$, for all $X \in D$.

4. Integrability conditions for distributions

Theorem 4.1. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M} with quarter symmetric non-metric connection, then the distribution $D \oplus \langle \xi \rangle$ is integrable if the following conditions are satisfied

$$S(X, Y) \in (D \oplus \langle \xi \rangle)(4.1)$$

$$h(X, \phi Y) = h(\phi X, Y)(4.2)$$

for $X, Y \in D \oplus \langle \xi \rangle$.

Proof: The torsion tensor $S(X, Y)$ of almost contact structure is given by

$$S(X, Y) = N(X, Y) + 2d\eta(X, Y)\xi,$$

where $N(X, Y)$ is Nijenhuis tensor.

$$S(X, Y) = [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y] + 2d\eta(X, Y)\xi(4.3)$$
Suppose that $D \oplus \langle \xi \rangle$ is integrable so for $X, Y \in D \oplus \langle \xi \rangle$, $N[X, Y] = 0$, then $S(X, Y) = 2d\eta(X, Y)\xi \in D \oplus \langle \xi \rangle$.

From (2.22) we get

$$N(X, Y) = 8\eta(Y)\phi X + 4\eta(\nabla_X Y)\xi - 4Bh(X, \phi Y) - 4Ch(X, \phi Y) \tag{4.4}$$

$$-4h(X, Y) - 4\phi \nabla_X \phi Y - 4\nabla_X Y - 2g(\phi X, Y)\xi$$

From (4.3) and (4.4), we get

$$\phi Q(\nabla_X \phi Y) + Ch(X, \phi Y) + h(X, Y) = 0$$

for all $X, Y \in D$. Replacing Y by ϕZ where $Z \in D$, we have

$$\phi Q(\nabla_{\phi Z} \phi Y) + Ch(\phi Z, \phi Y) + h(Y, \phi Z) = 0.$$

Interchanging X and Z, we have

$$\phi Q(\nabla_{\phi Y} \phi Z) + Ch(\phi Y, \phi Z) + h(\phi Y, Z) = 0.$$

Subtracting above two equations, we have

$$\phi Q[\phi Y, \phi Z] + h(Z, \phi Y) - h(Y, \phi Z) = 0$$

from which the assertion follows.

Lemma 4.2. Let M be a semi-invariant submanifold of a nearly-Sasakian manifold \bar{M} with quarter symmetric non-metric connection, then

$$2(\nabla_Y \phi)Z = A_{\phi Y}Z - A_{\phi Z}Y - 2g(Y, Z)\xi + \nabla^\perp_Y \phi Z - \nabla^\perp_Z \phi Y - \phi[Y, Z].$$

Proof: Lemma follows after similar computations to lemma 3.2 in [7].

Proposition 4.3. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M} with quarter symmetric non-metric connection, then

$$A_{\phi Y}Z - A_{\phi Z}Y = \frac{1}{3}\phi P[Y, Z] - \frac{2}{3}g(\phi Y, Z)$$

Proof: Let $Y, Z \in D^\perp$ and $X \in \chi(M)$ then from (2.14) and (2.16), we have

$$2g(A_{\phi Z}Y, X) = -g(\nabla_Y \phi X, Z) - g(\nabla_X \phi Y, Z) + g((\nabla_Y \phi)X + (\nabla_X \phi)Y, Z)$$

By use of (2.7) and $\eta(Y) = 0$ for $Y \in D^\perp$, we have

$$2g(A_{\phi Z}Y, X) = -g(\phi \nabla_Y Z, X) + g(A_{\phi Y}Z, X) + 2\eta(X)g(Y, Z).$$

Transvecting X from both sides, we get

$$2A_{\phi Z}Y = -\phi \nabla_Y Z + A_{\phi Y}Z + 2g(Y, Z)\xi.$$
Interchanging Y and Z,

$$2A_{\phi Y}Z = -\phi\nabla_Z Y + A_{\phi Z}Y + 2g(Z, Y)\xi.$$

Subtracting above two equations, we get

$$(A_{\phi Y}Z - A_{\phi Z}Y) = \frac{1}{3}\phi P[Y, Z](4.5),$$

where $[Y, Z]$ is the Lie bracket for $\bar{\nabla}$.

Theorem 4.4. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M} with quarter symmetric non-metric connection. Then the distribution D^\perp is integrable if and only if

$$A_{\phi Y}Z - A_{\phi Z}Y = \frac{2}{3}g(Y, \phi Z)$$

for all $Y, Z \in D^\perp$.

Proof: The proof is similar to theorem 3.4 in [7].

References

Received: March 11, 2013