Case Study of Markov Chains Ray-Knight Compactification

HaiXia Du and YanLing Pan

Department of Mathematics and Statistics
Zhengzhou Normal University Zhengzhou, 450044, China

Copyright © 2014 HaiXia Du and YanLing Pan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

It gives Ray-Knight compactifications of specific examples to illustrate the complexity.

Keywords: Ray - Knight compactification; Transfer function; Resolvent

1. Introduction

Structural problems of Markov chain suffered for decades, is not completely resolved, the main reason is the general Markov chain has only locally strong Markov property. Reference [1] using Ray-Knight compactification method, construct strong Markov process corresponding to the transfer function. Reference [2] using Ray - Knight of the Markov chain method, proves that the Markov chain the existence of the local time of. Reference [3], [4], [5] using Markov chain Ray-Knight compactification method, solves the structural problem of bilateral birth- death process. Reference [6] using Markov chain Ray-Knight compactification method, solves the structural problem of birth- death process. Reference [7], [8] illustrates the relationship of Martin entrance boundary and Ray-Knight compactification of minimal Q-processes. Thus, Ray-Knight compactification is the bridge to solve the problem of Markov chain structure. In this article, we will through specific examples to illustrate the Ray - Knight com-
pactification of Markov chain, at the same time, it shows that Ray-Knight compactification complexity.

2. Preliminaries

Let $E=\{1,2,\ldots\}$, we agree on the topology of E is discrete topology, then E is a locally compact and has a countable topological space, and the function of E is a continuous function. Called the state of the elements in E.

All bounded functions on E denoted as M, with bounded nonnegative functions denoted as M^+, M and M^+ topology is the topology of uniform convergence. Sometimes we take M and M^+ elements as infinite dimensional column vector. The family of functions $P(t) = \left(p_{ij}(t)\right)_{i,j \in E}, t \geq 0$ on $[0, \infty)$ is called the transfer function on E, if

$$p_{ij}(t) \geq 0, \ldots (1)$$

$$\sum_{k=1}^{\infty} p_{ik}(t) \leq 1, \ldots (2)$$

$$p_{ij}(t+s) = \sum_{k=1}^{\infty} p_{ik}(t)p_{kj}(s), \ldots (3)$$

If there is $\lim_{t \to 0} p_{ij}(t) = p_{ij}(0) = \delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$, then called $P(t)(t \geq 0)$ as a standard.

Said $P(t)(t \geq 0)$ is honest (or not interrupted), if established for $i \in E$ all equal sign in (2).

Known that if $P(t)(t \geq 0)$ transfer function is the standard, then there is a limit:

$$\lim_{t \to 0} \frac{p_{ij}(t)-\delta_{ij}}{t} = q_{ij}, i, j \in E.$$

and $0 \leq q_{ij} < \infty, 0 \leq q_{ii} = -q_{ij} \leq \infty, \sum_{k \neq i} q_{ik} \leq q_{i}$.

Matrix $Q = \left(q_{ij}(t)\right)_{i,j \in E}$ is called $P(t)(t \geq 0)$ of density matrix on E.

Let $R_{ij}(\lambda) = \int_{0}^{\infty} e^{-\lambda t} p_{ij}(t) dt, i, j \in E, \lambda > 0$. $R_{ij}(\lambda)$ is called the resolvent of
$P(t)(t \geq 0) R_{ij}(\lambda)$ is the resolvent of the transfer function of $P(t)(t \geq 0)$, if and only if the following conditions (6) – (9) holds

$$\lambda \sum_{k \in E} R_{ik}(\lambda) \leq 1 \quad (6)$$

$$R_j(\lambda) - R_j(\mu) + (\lambda - \mu) \sum_{k \in E} R_{ik}(\lambda) R_j(\mu) = 0 \quad (7)$$

$$\lim_{\lambda \to \infty} \lambda R_{ij}(\lambda) = \delta_{ij} \quad (8)$$

$$\lim_{\lambda \to \infty} |\lambda R_{ij}(\lambda) - \delta_{ij}| = q_{ij} \quad (9)$$

Let $E\{1, 2, \cdots\}, P_{ij}(t)$ is the honesty transfer function on E, $R_{ij}(\lambda)$ is the resolvent of $P_{ij}(t)$, The norm of M is defined as: for arbitrary $f \in M$,

$$\|f\| = \sup_{i \in E} |f(i)|$$. Let the function $i \to \sum_{k \in E} R_{ik}(\lambda) f(k)$ is $R_\lambda f$. Obviously, $R_\lambda f$ is linerator on M and $\|R_\lambda\| = \frac{1}{\lambda}$. For any $G \subset M$, let

$$u(G) = \sum_{i=1}^{n} u_i R_{\lambda_i} f_i |n \in \mathbb{N}, \lambda_i > 0, u_i \geq 0, f_i \in G, \forall i \leq n\}$$. $

$$\Lambda(G) = \{f_1 \Lambda \cdots \Lambda f_n \mid n \in \mathbb{N}, f_1, \cdots, f_n \in G\}.$$

Take $H = H = \{E(k) \mid k \in E\} \cup \{1\}$, then H is countable subset of G, let

$$R^{(1)} = u(H), \quad R^{(n+1)} = \Lambda(R^{(n)} + u(R^{(n)}))$$, $R = \bigcup_{n=1}^{\infty} R^{(n)}$. let $\{g_m\}_{m=1}^{\infty}$ is the dense subset of R, $d(x, y) = \sum_{m=1}^{\infty} \frac{1}{2^m} |[g_m(x) - g_m(y)]1|, \forall x, y \in S$. (10)

Then $d(\cdot, \cdot)$ is the measure on E. \overline{E} is the completion of the E under $d(\cdot, \cdot)$. Apparently, E is compact metric space, called Ray-Knight compactification of E. $R_{ij}(\lambda)$ can expand into $U^\alpha(x, dy)$ which is the ray resolvent on \overline{E}, $P_t(x, dy)$
is the ray semi-group corresponding to $U^\alpha(x,dy)$. Let

$$D = \{x \in \mathbb{E} | P_0(x,\cdot) = \delta_x(\cdot)\},$$

then D is called non-branch point sets, the point of D is called non-branch point.

3. Example of Ray-Knight compactification

Let $E = \{1, 2, \ldots\}$, $Q = \begin{pmatrix}
-q_1 & q_1 & 0 & 0 & \cdots & \cdots \\
0 & -q_2 & q_2 & 0 & \cdots & \cdots \\
0 & 0 & -q_3 & q_3 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix}$

q_1, q_2, \ldots are a list of integers. The minimum transfer function of Q is named $P^n(t)$, the resolvent of $P^n(t)$ defined by

$$R_{ij}^{\min} = \begin{cases}
0 & \text{if } j < i \\
(\lambda + q_i)^{-1} \prod_{i \leq k < j} (1 + \lambda q_k^{-1})^{-1} & \text{if } j > i \\
(1 + \lambda q_i^{-1})^{-1} & \text{if } j = i
\end{cases} \quad (11)$$

and $P^n(t)$ is honest if and only if $\sum_{i=1}^{\infty} q_i^{-1} = \infty$ (references [9]).

Example 1. Let the minimum transfer function $P^n(t)$ is honest, then

$$\sum_{i=1}^{\infty} q_i^{-1} = \infty, R_{ij}^{\min}(\lambda)$$ to satisfy the following assumptions:

1. E is topological space which is the locally compact and has countable topological base (Referred to as L.C.C.B);

2. $\{R_\lambda\}_{\lambda > 0}$ is Markov and $R_\lambda C_b(E) \subseteq C_b(E)$, for arbitrary $\lambda > 0$;

3. For arbitrary $f \in C_b(E)$ and $x \in E$, $\lim_{\lambda \to \infty} \lambda R_\lambda f(x) = f(x)$, $\lim_{i \to \infty} R_i^{\min}(\lambda) = 0$.

Proof. For arbitrary $f \in R^{(i)}$, $\lim_{i \to \infty} f(i) = 0$. Using mathematical induction, it is
easy to prove that for arbitrary \(f \in R^{(n)} \), \(\lim_{i \to \infty} f(i) = 0 \). By denoting \(\overline{E} = E \cup \{\infty\} \),
then \(\overline{E} \) is the one point compactification of \(E \). For arbitrary \(\alpha > 0 \), then
\(U^{(\alpha)}(\infty, j) = \lim_{i \to \infty} R_j(\alpha) = 0 \). so \(U^{(\alpha)}(\infty, \{\infty\}) = 1 \). \(\infty \) is a non-branch point.

\(E = E_\mathcal{R} \), \(D = \overline{E} \).

Example 2. Let \(\mu_i, i=1,2,\ldots \) is a probability measure on \(E \). \(\mu_i < 1 \), for arbitrary \(i \in E \), the minimum transfer function \(\min \{ \lambda \} \) is interrupt, \(P(t)(t \geq 0) \) is transfer function of Doob process which is \((Q,\pi)\) type.

Proof. From references【9】 , we know that \(\sum_{i=1}^{\infty} q_i^{-1} = \infty \), the orbit of \(\{X_t\} \) is right continue. The conditions distribution of \(P\{X_0=i\} \) is remembered to \(P^i(\cdot) \), the corresponding conditional expectation is remembered to \(E^i(\cdot) \).

Let \(\sigma = \inf \{s\|X_s=\infty\} \), then \(\sigma \) is the first leap point and the following equation holds. \(E^i(e^{-\lambda \sigma}) = \prod_{j>\sigma}(1+\lambda q_i^{-1})^{-1} \), \(\forall i \in E, \lambda > 0 \) (12). The resolvent of \(P(t) \) is as follows: \(R_y(\lambda) = R_{\lambda y}^\min(\lambda) + \mathbb{E}\{e^{-\lambda \sigma}\}, \sum_{k \in E} \mu_k R_{\lambda k}^\min(\lambda) \sum_{k \in E} \mu_k [1-E^k \{e^{-\lambda \sigma}\}] \}, \forall i, j \in E \) (13).

For any \(i, j \in E, \lambda > 0 \), obviously,

\[
\lim_{i \to \infty} E^i(e^{-\lambda \sigma}) = 1, \lim_{i \to \infty} R_{\lambda y}^\min(\lambda) = 0, \lim_{i \to \infty} R_{\lambda y}(\lambda) = \sum_{k \in E} \mu_k R_{\lambda k}^\min(\lambda) \sum_{k \in E} \mu_k [1-E^k \{e^{-\lambda \sigma}\}] .
\]

Modeled on the example one, it is easy to prove that for arbitrary \(f \in R^{(n)} \), \(\lim_{i \to \infty} f(i) \) is exist. By the definition of \(\overline{E} \), then \(\overline{E} = E \cup \{\infty\} \). For arbitrary \(\alpha > 0 \), by the definition of \(U^{(\alpha)} \), then
\[U^a(\infty, j) = \lim_{i \to \infty} R_j(\alpha) = \frac{\sum_{k \in E} \mu_k R_{ij}^{\min}(\alpha)}{\sum_{k \in E} \mu_k [1 - E^k \{e^{-\lambda \sigma}\}]} \quad \forall j \in E. \]

Therefore, \(U^a(\infty, E) = \frac{1}{\alpha} P_0(\infty, j) = \mu_j \), for arbitrary \(j \in E \). \(\infty \) is a non-branch point. \(E_R = E \cup \{\infty\} \), \(D = E \).

Remark: In the same way to prove the following conclusion, if there is \(i_0 \in E \) make that \(\mu_{i_0} = 1 \), then the Ray-Knight compactification of \(E \) is named \(\overline{E} \) which meets the following equation, \(\overline{E} = E \), and \(i_0 \) is the limit point of the sequence point of \(1, 2, 3, \ldots \). At the same time, \(\overline{E} = E = E_R = D \).

Example 3. Let \(\mu_i, i = 1, 2, \ldots \) is a probability measure on \(E \). \(\mu_i < 1 \), for arbitrary \(i \in E \), the minimum transfer function minium \(P^{*n}(t) \) is interrupt, The Markov chain \(\{X_i\} \) corresponding to \(P(t)(t \geq 0) \) is not Doob process.

Proof. From references \([10]\), we know that \(\sum_{i=1}^{\infty} q^{-1} < \infty \),

\[
\text{lim} E^t(e^{-\lambda \sigma}) = \text{lim} \prod_{i \to \infty} \frac{q_k}{\lambda + q_k} = 1. \quad \text{Since} \quad Q \quad \text{is single outflow zero inflow, according to the general conclusions of single outflow of Markov chain, so there is}
\]

\[\mu_i, i = 1, 2, \ldots, \text{such that} \quad \sum_{k=1}^{\infty} \mu_k = \infty, \sum_{k} \mu_k [1 - E^k \{e^{-\lambda \sigma}\}] < \infty, \forall \lambda > 0 \quad (14) \]

Moreover, \(R_j(\lambda) \) is the resolvent of the transfer function of \(P(t)(t \geq 0) \) and

\[
R_j(\lambda) = R_{ij}^{\min}(\lambda) + E \{e^{-\lambda \sigma}\} \cdot \frac{\sum_{k \in E} \mu_k R_{ij}^{\min}(\lambda)}{\sum_{k \in E} \mu_k [1 - E^k \{e^{-\lambda \sigma}\}]} \quad i, j \in E, \lambda > 0 \quad (15)
\]

Modeled on the example two, we can prove that \(\overline{E} = E \cup \{\infty\} \). For arbitrary
Case study of Markov chains Ray-Knight compactification

\[\alpha > 0, \quad U^\alpha (\infty, j) = \lim_{i \to \infty} R_i(\alpha) = \frac{\sum_{k \in E} \mu_k R^\alpha_{kj}(\alpha)}{\sum_{k \in E} \mu_k [1 - E\{e^{-\alpha}\}]} \cdot j \in E. \]

(16)

Use the formula of (14), then \(\lim \alpha U^\alpha (\infty, j) = 0 \), that is \(\lim_{i \to 0} P'(\infty, \cdot) = \delta_\infty (\cdot) \). So \(\overline{E} = E_R = D = E \cup \{\infty\} \).

For the transfer function which contains instantaneous state, it’s Ray-Knight compactification structure is more complicated, please look at the case.

Example 4. If \(q_i, i = 1, 2, \cdots \) is a list of positive number, consider the following matrix \(Q \).

\[
Q = \begin{pmatrix}
-\infty & 1 & 1 & 1 & \ldots \\
q_2 & -q_2 & 0 & 0 & \ldots \\
q_3 & 0 & -q_3 & 0 & \ldots \\
q_4 & 0 & 0 & -q_4 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

with \(\sum_{i=2}^\infty q_i^{-1} < \infty \).

The matrix is called **Kolmogorov** matrix. It corresponds to the resolvent

\[R_{11}(\lambda) = \frac{1}{\lambda} \left(1 + \sum_{k=2}^{\infty} \frac{1}{\lambda + q_k} \right) \]

\[R_{ij}(\lambda) = R_{11}(\lambda) \cdot \frac{1}{\lambda + q_j}, \quad j \geq 2 \]

\[R_{ii}(\lambda) = \frac{q_i}{\lambda + q_i} \cdot R_{11}(\lambda), \quad i \geq 2 \]

\[R_{ij}(\lambda) = \frac{q_i}{\lambda + q_i} \cdot R_{11}(\lambda) \cdot \frac{1}{\lambda + q_j} + \frac{\delta_{ij}}{\lambda + q_j}, \quad i, j \geq 2 \]

Obviously, \(\lim_{\lambda \to \infty} R_{ij}(\lambda) = R_{ij}(\lambda) \), it is easy to prove \(\overline{E} = E \), and under the topology of Ray-Knight, \(1 \) is the limit point of the sequence point of \(2, 3, \cdots \).
References

Received: October 15, 2014; Published: December 18, 2014