Recursiveness in Hilbert Spaces and Application to Mixed $ARMA(p,q)$ Process

R. Ben Taher, M. Rachidi and M. Samih

Equip of DEFA - Department of Mathematics and Informatics
Faculty of Sciences, University of My Ismail
B.P. 4010, Beni M‘hamed, Meknes - Morocco

Abstract

In this paper, the gap between the nonhomogeneous linear recurrence relation and the mixed $ARMA(p,q)$ process in Hilbert spaces is provided. We focus ourselves on the case when the $ARMA(p,q)$ process is of Fibonacci type. Notably, involving properties of Fibonacci sequences, we reach to establish the new formulations of some characteristics of the $ARMA(p,q)$ process. For purpose of illustration, some examples are explored.

Mathematics Subject Classification: Primary: 37H10, 40A99; Secondary: 37M10, 62M10, 65Q05

Keywords: ARMA process, Fibonacci sequences, Hilbert space, nonhomogeneous linear recurrence relation, stochastic process

1 introduction

Let (Ω, \mathcal{A}, P) be a probability space and consider the stochastic process $\{X_t; t \in \mathbb{Z}\}$ of a mixed $ARMA(p,q)$ process, satisfying the following difference equation,

$$X_{t+1} = a_0 X_t + \cdots + a_{p-1} X_{t-p+1} + C_{t+1},$$

(1)
such that $C_{t+1} = A_{t+1} + b_0 A_t + \cdots + b_{q-1} A_{t-q+1}$, where $a_0, a_1, \ldots, a_{p-1} \in \mathbb{R}$ are the auto-regressive parameters, $b_0, b_2, \ldots, b_{q-1} \in \mathbb{R}$ are the auto-regressive moving average regressive parameters and $\{A_t; t \in \mathbb{Z}\}$ is a stochastic process describing the white noise (see [4], for example). The mixed $ARMA(p,q)$ process are currently used in the methods of prediction and time series (for more details see [4], [5], for example). For discrete indices $t = n$ and $\omega \in \Omega$, we set $x_n = X_n(\omega)$ and $c_n = C_n(\omega)$. It ensues from Equation (1) that the sequence $\{x_n\}_{n \geq 0}$ satisfies the following nonhomogeneous linear recursive equation,

$$x_{n+1} = a_0 x_n + \cdots + a_{p-1} x_{n-p+1} + c_{n+1}, \text{ for every } n \geq p-1,$$

(2)

where x_0, \ldots, x_{p-1} are the initial data. Solutions of Equation (2) are studied in the literature when c_n is polynomial or factorial polynomial (see [2], [7], [8], [9], for example). Recently, two methods have been proposed, for studying solutions of Equation (2) in [2], [7]. More precisely, in [7] a matrix theoretical approach for solving (2) is developed for a general $\{c_n\}_{n \geq 0}$. Beside in [2], a linearization process is introduced, when $\{c_n\}_{n \geq 0}$ verifies a nonhomogeneous linear recursive relation. When $c_n = 0$, for every n, it was proved in [11] that solutions of the homogeneous part of (2) are,

$$x_n^{<n>} = \rho(n,p) S_0 + \rho(n-1,p) S_1 + \cdots + \rho(n-p+1,p) S_{p-1},$$

(3)

for $n \geq p$, where $S_k = a_{p-1} x_k + \cdots + a_k x_{p-1}$ ($0 \leq k \leq p - 1$) and

$$\rho(n,p) = \sum_{k_0+2k_1+\ldots+pk_{p-1}=n-p} \frac{(k_0 + \cdots + k_{p-1})!}{k_0! \cdots k_{p-1}!} a_0^{k_0} \cdots a_{p-1}^{k_{p-1}},$$

(4)

with $\rho(p,p) = 1$ and $\rho(n,p) = 0$ if $n \leq p - 1$.

On the other hand, the closed relationship between stochastic process and the recursive relation (2), has been explored in [10], [11]. Moreover, it was established that some probabilistic properties are related both to recursiveness and Expression (4) in [13], [14]. Particularly, it was shown that Expression (4) is also a special case of Philippou polynomials (see [1], [3]).

In this paper, we are interested in studying a theoretical approach of the mixed $ARMA(p,q)$ (stochastic) process defined by (1) and the nonhomogeneous linear recurrence relation (2) in a real Hilbert space. We extend the matrix method of [7] to the case of a real Hilbert space (Section 2). We apply this extension in order to obtain a general solution of (2). Using the extension of the linearization method of [2] to the case of real Hilbert spaces, we study the case of $ARMA(p,q)$ process of Fibonacci type defined by $C_{t+1} = A_{t+1} = b_0 A_t + b_1 A_{t-1} + \cdots + b_{q-1} A_{t-q+1}$ (Section 3). Properties concerning the computation of some characteristics of the $ARMA(p,q)$ model, via the approach of linear recurrence relations, are explored (Section 4). Final
2 Equation (2) in a Hilbert space

In this section, we extend the fundamental results established in [2], [7] upon the matrix method and the linearization process for solving Equation (2). To this aim, we recall first the following known result established in [7].

Proposition 2.1 Let \(\{v_{n}\}_{n \geq 0} \) be a real Fibonacci sequence given by \(v_{n+1} = a_0v_n + \cdots + a_{p-1}v_{n-p+1} \) for \(n \geq 0 \), where \(v_0, v_1, \ldots, v_{p-1} \) are specified initial data. Let \(A = (\alpha_{i,j})_{1 \leq i,j \leq p} \) be the matrix defined by \(\alpha_{i,j} = a_{j-i} \), for every \(1 \leq j \leq p \), and \(\alpha_{i,j} = \delta_{i-j,1} \), for every \(2 \leq i \leq p, 1 \leq j \leq p \). Then, for \(n \geq 1 \), the entries \(a_{is}^{(n)} \) \((0 \leq i, s \leq p-1) \) of the matrix powers \(A^n \) are given by \(a_{is}^{(n)} = v_{n-i}^{(s)} \), where \(\{v_{n}^{(s)}\}_{n \geq 0} \) are \(p \) copies of \(\{v_{n}\}_{n \geq 0} \), whose initial conditions are \(v_{j}^{(s)} = \delta_{s,j} \) \((0 \leq j \leq p-1, 0 \leq s \leq p-1) \). Here, \(\delta_{s,j} \) represents the Kronecker symbol.

In view of (3), we infer that for every \(s \) \((0 \leq s \leq p-1) \) the sequence \(\{v_{n+1}^{(s)}\}_{n \geq 0} \) can be formulated as follows. For \(0 \leq n \leq p-1 \) we have \(v_{n}^{(s)} = \delta_{n,s} \)

\[
v_{n}^{(s)} = a_{p-s+1}\rho(n,p) + a_{p-1}\rho(n-1,p) + \cdots + a_{p-1}\rho(n-s+1,p), \quad \text{for } n \geq p,
\]

where the \(\rho(n,p) \) are given by Expression (4).

Consider \(\{T_n\}_{n \geq 0} \) and \(\{C_n\}_{n \geq 0} \) two sequences of \(\mathcal{H} \) satisfying (2). For \(n \geq p-1 \), we set \(Z_n = \left(T_n, \ldots, T_{n-p+1}\right)^\prime \in \mathcal{H}^p \) and \(D_n = \left(C_n, 0, \ldots, 0\right)^\prime \in \mathcal{H}^p \), where \(\left(T_n, \ldots, T_{n-p+1}\right)^\prime \) means the transpose of \(Z \). It’s easy to show that (2) is equivalent to the matrix equation \(Z_{n+1} = AZ_n + D_{n+1} \), for \(n \geq p-1 \), where \(A = (\alpha_{i,j})_{1 \leq i,j \leq p} \) is the matrix exhibited in Proposition 2.1. Thus, we obtain \(Z_n = A^{n-p+1}Z_{p-1} + \sum_{k=p}^{n} A^{n-k}D_k \), for every \(n \geq p \). Hence, similarly to the real case (see [2], [7]), we establish that the solution of Equation (2) is,

\[
T_n = \sum_{s=0}^{p-1} v_{n-p+1-s}^{(s)} T_{p-s-1} + \sum_{k=p}^{n} v_{n-k}^{(0)} C_k, \quad \text{for every } n \geq 0.
\]

The sequence \(\{T_n^{<h>}\}_{n \geq 0} \) defined by \(T_n^{<h>} = \sum_{s=0}^{p-1} v_{n-p+1-s}^{(s)} T_{p-s-1} \) is a solution of the homogeneous part of Equation (2). In addition, a particular solution \(\{T_n^{<p>}\}_{n \geq 0} \) of (2) is \(T_n^{<p>} = \sum_{k=p}^{n} v_{n-k}^{(0)} C_k = -\sum_{s=0}^{p-1} v_{n-p+1-s}^{(s)} T_{p-s-1} + T_n \), where
\(T_n^{<p>} = 0 \) for \(n = 0, 1, \cdots, p - 1 \). The sequence \(\{T_n^{<p>}\}_{n \geq 0} \) is called the fundamental particular solution of (2). Thence, in light of Proposition 2.1 and Equation (6), we get the following general result,

Theorem 2.2 Let \(\{T_n\}_{n \geq 0} \) be a solution of (2) in a Hilbert space \(\mathcal{H} \). Then, for \(n \geq 0 \), we have

\[
T_n = T_n^{<h>} + T_n^{<p>} = T_n^{<h>} - \sum_{s=0}^{p-1} q^{(s)}_{n-p+1} T_{p-s-1}^{<p>} + T_n^{<p>},
\]

where \(\{T_n^{<p>}\}_{n \geq 0} \) is the fundamental particular solution of (2) and \(\{T_n^{<h>}\}_{n \geq 0} \) is a solution of the homogeneous part of (2) with initial data \(T_0, \cdots, T_{p-1} \).

Now let consider the case when \(\{C_n\}_{n \geq 0} \) is a linear recursive sequence. Set \(\{W_n\}_{n \geq 0} \) a recursive sequence in \(\mathcal{H} \), whose initial data are \(W_0, \cdots, W_{s-1} \) and \(W_{n+1} = b_0 W_n + \cdots + b_s W_{n-s+1} \), for \(n \geq s - 1 \), where \(b_0, \cdots, b_{s-1} \) are fixed in \(\mathbb{R} \). Suppose that \(C_n = W_n \) then, for every \(n \geq p + s - 1 \), Equation (2) yields \(W_{n-j} = T_{n-j} - \sum_{k=0}^{p-1} a_k T_{n-k-j-1} \), for \(0 \leq j \leq s - 1 \). And the substitution of these expressions in (2), implies that \(T_n \ (n \geq p + s - 1) \) satisfies the following linear recurrence equation of order \(p + s \),

\[
T_{n+1} = \sum_{j=0}^{p-1} a_j T_{n-j} + \sum_{j=0}^{s-1} b_j T_{n-j} - \sum_{j=0}^{s-1} \sum_{k=0}^{p-1} b_j a_k T_{n-j-k-1}.
\]

As a result, we get the following extension of the Linearisation Process of [2] (see Theorem 2.1 of [2]),

Theorem 2.3 (Linearization Process). Let \(\{T_n\}_{n \geq 0} \) be a sequence of \(\mathcal{H} \) solution of (2) and suppose that \(C_n = W_n \), where \(\{W_n\}_{n \geq 0} \) is a homogeneous linear recursive sequence of order \(s \). Then, the sequence \(\{T_n\}_{n \geq 0} \) satisfies a homogeneous linear recursive equation of order \(m = r + s \) in \(\mathcal{H} \), with initial data \(T_0, \cdots, T_{p+s-1} \) and whose coefficients are those of the polynomial \(p(z) = p_1(z)p_2(z) \), where \(p_1(z) = z^p - \sum_{j=0}^{p-1} a_j z^{p-j-1} \) and \(p_2(z) = z^s - \sum_{j=0}^{s-1} b_j z^{s-j-1} \).

Remark 2.4 For \(E = \mathbb{R} \), it is well known that the solution of (2) can be written under the form \(T_n = T_n^{<h>} + T_n^{<p>} \), where \(\{T_n^{<h>}\}_{n \geq 0} \) and \(\{T_n^{<p>}\}_{n \geq 0} \) are the solutions of the homogeneous part and the particular solution of (2) respectively. It is easy to verify that this property is still valid for sequences (2) in \(\mathcal{H} \). Following the similar method of [11], we can bring out that the particular solution of (2) is \(T_n^{<p>} = T_n - T_n^{<h>} \), for \(n \geq 0 \).
3 Study of the ARMA\((p, q)\) process equations

3.1 General setting.

In this section we are concerned by the Hilbert space \(\mathcal{H} = L^2(\Omega, \mathcal{A}, P)\), where \((\Omega, \mathcal{A}, P)\) is a probability space. That is, \(\mathcal{H}\) is the collection of the real-valued random variables (\(r.r.v.\) for short) \(X\) with finite variance, viz.,

\[
E(X^2) = \int X^2(\omega)P(d\omega) = \int X^2dP < +\infty.
\]

Here \(\mathcal{H}\) is equipped with the usual inner product \(<X, Y> = E(XY) = \int XYdP\). Expressions (5)-(6) and Theorem 2.2, allow us to formulate the result.

Theorem 3.1 Let \(\{X_t \in \mathcal{H}; t \in \mathbb{Z}\}\) be an ARMA\((p,q)\) process and \(\{A_t \in \mathcal{H}; t \in \mathbb{Z}\}\) its associated white noise. Then, for every \(t \geq p\), we have

\[
X_t = \rho(t-p+1,p)X_{p-1} + [a_{p-2}\rho(t,p) + a_{p-1}\rho(t-1,p)]X_{p-2} + \cdots + (9)
\]

\[
\left[\sum_{j=0}^{s}a_{p-s+j-1}\rho(t-j,p)\right]X_{p-s+1} + \cdots + \left[\sum_{j=0}^{p-1}a_{j}\rho(t-j,p)\right]X_0 + \sum_{k=p}^{t}\rho(t-k,p)C_k,
\]

where \(X_0, X_1, \cdots, X_{p-1}\) are the \(r.r.v\) of the initial data, the \(\rho(n,p)\) are given by (4) and \(C_t = A_t + b_0A_{t-1} + \cdots + b_{q-1}A_{t-q}\).

Similarly, for \(t \leq 0\), we set \(Y_{p-t-1} = X_t\) and \(b_0 = -\frac{a_0}{a_{p-1}}, \cdots, b_j = -\frac{a_{p-j-1}}{a_{p-1}}, \cdots, b_{p-2} = -\frac{a_{p-2}}{a_{p-1}}, b_{p-1} = 1 / a_{p-1}\). Thus, we have

\[
X_t = \Delta_0X_0 + \Delta_1X_1 + \cdots + \Delta_{s-1}X_{s-2} + \cdots + \Delta_{p-1}X_{p-1} + \Gamma(-t), \quad (10)
\]

where \(\Delta_0 = \rho(t-p+1,p)\), \(\Delta_1 = b_{p-2}\hat{\rho}(-t + p - 1, p) + b_{p-1}\hat{\rho}(-t + p - 2, p)\), \(\Delta_{s-1} = \sum_{j=0}^{s}b_{p-s+j-1}\hat{\rho}(-t + p - 1 - j, p)\), \(\Delta_{p-1} = \sum_{j=0}^{p-1}b_j\hat{\rho}(-t + p - 1 - j, p)\) and \(\Gamma(-t) = \sum_{k=p}^{t}\hat{\rho}(-t + p - 1 - k, p)[\frac{-C_{k+2p-1}}{a_{p-1}}]\), with

\[
\hat{\rho}(n,p) = \sum_{k_0+2k_1+\cdots+p_k=n-p} \frac{(k_0 + \cdots + k_{p-1})!}{k_0! \cdots k_{p-1}!} b_0^{k_0} \cdots b_{p-1}^{k_{p-1}}.
\]

The combinatorial expressions (9)-(10) show that every \(r.r.v\). \(X_t\) (for \(t \geq p\)) can be expressed in terms of the initial \(r.r.v\). \(X_0, X_1, \cdots, X_{p-1}\) and \(A_t\) (\(t \in \mathbb{Z}\)) the \(r.r.v\). of the white noise. As far as we know (9)-(10) are not current in the literature on the ARMA\((p,q)\) models.
Example - Study of the ARMA(2,q) process. Consider \(\{X_t\}_{t \in \mathbb{Z}} \) an ARMA(2,q) process defined by the random vector of initial data \((X_0, X_1)\), and

\[
X_t = a_0 X_{t-1} + a_1 X_{t-2} + C_t,
\]

where \(C_{t+1} = A_{t+1} + b_1 A_t + \cdots + b_q A_{t-q+1} \). Let \(P(z) = z^2 - a_0 z - a_1 = (z - \lambda_1) (z - \lambda_2) \) be the characteristic polynomial of the homogeneous part of this process, where \(\lambda_1 \neq 0, \lambda_2 \neq 0 \) are in \(\mathbb{R} \). For studying the process (11), we discuss the two cases \(\lambda_1 \neq \lambda_2 \), and \(\lambda_1 = \lambda_2 \).

For \(\lambda_1 = \lambda_2 \), a direct computation shows that the Binet formula of \(\rho(t, 2) \) takes the form \(\rho(t, 2) = \lambda^{t-2}(-1 + t) \). Thereby, for every \(t \geq 2 \), we have

\[
X_t = (t - 2)\lambda^{t-3}X_1 + (2\lambda^{t-1}(-1 + t) - (t - 2)\lambda^{t-1})X_0 + \sum_{k=2}^{t} \lambda^{t-k-2}(t - k - 1)C_k.
\]

In the same way, for \(t \leq 0 \) we obtain \(\hat{\rho}(-t, 2) = (\frac{1}{\lambda})^{-t-2}(-1 - t) \) and thus

\[
X_t = \left(\frac{1}{\lambda}\right)^{-t-1}X_0 + [2(-1)^{-t}(\frac{1}{\lambda})^{-t}(-t) + (-1)^{-t}(\frac{1}{\lambda})^{-t}(-1 - t)]X_1 + \Gamma(t),
\]

where \(\Gamma(t) = \sum_{k=2}^{t} \lambda^{-t-k+1}(-t - k)C_{t-k} \).

For \(\lambda_1 \neq \lambda_2 \), a similar calculation leads to the Binet formula of \(\rho(n, 2) \) is

\[
\rho(n, 2) = \frac{\lambda_1^{n-1} - \lambda_2^{n-1}}{\lambda_1 - \lambda_2}.
\]

Hence, for \(t > 0 \), we get,

\[
X_t = \frac{\lambda_1^{t-2} - \lambda_2^{t-2}}{\lambda_1 - \lambda_2}X_1 + \left[(\lambda_1 + \lambda_2)(\frac{\lambda_1^{t-1} - \lambda_2^{t-1}}{\lambda_1 - \lambda_2}) + \lambda_1 \lambda_2 \frac{\lambda_1^{t-2} - \lambda_2^{t-2}}{\lambda_1 - \lambda_2}\right]X_0 + \Gamma(t),
\]

where \(\Gamma(t) = \sum_{k=2}^{t} \frac{\lambda_1^{t-k-1} - \lambda_2^{t-k-1}}{\lambda_1 - \lambda_2}C_k \). For \(t \leq 0 \), we have

\[
\hat{\rho}(-t, 2) = \frac{1}{(\lambda_1 \lambda_2)^{-t-2}} \frac{\lambda_2^{-t-1} - \lambda_1^{-t-1}}{\lambda_2 - \lambda_1}.
\]

Whence,

\[
X_t = \Lambda_1(t)X_0 + \Lambda_2(t)X_1 + \Gamma(t),
\]

where \(\Gamma(t) = \sum_{k=2}^{t} \frac{\lambda_2^{-t-k} - \lambda_1^{-t-k}}{\lambda_2 - \lambda_1} \left(\frac{1}{(\lambda_1 \lambda_2)^{-t-2}}\right)C_{t-k} \), \(\Lambda_1(t) = \frac{1}{(\lambda_1 \lambda_2)^{-t-2}} \left[\frac{\lambda_2^{-t-1} - \lambda_1^{-t-1}}{\lambda_2 - \lambda_1}\right] \), and \(\Lambda_2(t, \lambda_j) = \frac{\lambda_1 + \lambda_2}{(\lambda_1 \lambda_2)} \left[\frac{\lambda_2^{-t-1} - \lambda_1^{-t-1}}{\lambda_2 - \lambda_1}\right] + \left(\frac{-1}{(\lambda_1 \lambda_2)^{-t-2}}\right)\left[\frac{\lambda_2^{-t-1} - \lambda_1^{-t-1}}{\lambda_2 - \lambda_1}\right] \).

3.2 The ARMA\((p,q)\) process of Fibonacci type and linearization process.

We say that an ARMA\((p,q)\) process is of Fibonacci type if in (1) the \(C_{t+1} \) takes the form \(C_{t+1} = A_{t+1} + b_1 A_t + \cdots + b_{q-1} A_{t-q+1} \), where \(\{A_t\}_{t \in \mathbb{Z}} \) is the
r.r.v. of white noise. That is to say, \(\{A_t\}_{t \in \mathbb{Z}} \) satisfies a linear recursive relation of order \(q \) and with initial data \(A_0, \ldots, A_{q-1} \). With the aid of Theorem 2.2 and (8), the process \(\{X_t\}_{t \in \mathbb{Z}} \) satisfies the following linear recursive equations of order \(r = p + q \),

\[
X_{t+1} = (a_0 + b_0)X_t + \sum_{j=0}^{r_1-1} (a_j + b_j - c_j)X_{t-j} + \sum_{j=r_1}^{r_2-1} v_jX_{t-j} - \sum_{j=r_2}^{p+q-1} c_jX_{t-j}, \quad (12)
\]

where \(c_j = \sum_{k+s=j; k \geq 1, s \geq 0} b_{k-1}a_s \) and \(r_1 = \min(p, q) \), \(r_2 = \max(p, q) \) with \(v_j = a_j - c_j \) for \(p > q \), \(v_j = b_j - c_j \) for \(p < q \) and \(v_j = 0 \) for \(p = q \).

Theorem 3.2 Let \(\{X_t \in \mathcal{H}; t \in \mathbb{Z}\} \) be an ARMA\((p,q)\) process of Fibonacci type and \(\{A_t \in \mathcal{H}; t \in \mathbb{Z}\} \) its associated white noise, with initial data \(X_0, \ldots, X_{p-1} \) and \(A_0, \ldots, A_{q-1} \). Then, the process \(\{X_t\}_{t \in \mathbb{Z}} \) satisfies a homogeneous linear recursive of order \(r = p + q \) in \(\mathcal{H} \), whose coefficients are those of the polynomial \(p(z) = p_1(z)p_2(z) \), where \(p_1(z) = z^p - \sum_{j=0}^{p-1} a_jz^{p-j-1} \) and \(p_2(z) = z^q - \sum_{j=0}^{q-1} b_jz^{q-j-1} \).

For reason of simplicity we suppose that \(p \geq q \), since the same argumentation still valid in the case of \(p \leq q \). It’s easy to see that Expression (12) takes the linear form \(X_{t+1} = \sum_{j=0}^{p+q-1} w_jX_{t-j} \), such that the coefficients \(w_j \), derived from Theorem 2.3, are given by

\[
w_0 = a_0 + b_0, \quad w_j = a_j + b_j - c_j \text{ for } 1 \leq j \leq q-1, \quad w_j = a_j - c_j \text{ for } q \leq j \leq p-1
\]

and \(w_j = c_j \) for \(p \leq j \leq p + q - 1 \),

and its initial data are

\[
R_j = X_j \text{ for } 0 \leq j \leq p - 1 \text{ and } R_j = X_j + A_j \text{ for } p \leq j \leq p + q - 1. \quad (14)
\]

Theorems 2.3, 3.2 and (3) yield,

Theorem 3.3 Under the data of Theorem 3.2, the system \(\{X_t; t \in \mathbb{Z}\} \) obey to a linear recursive equation of order \(r = p + q \), whose coefficients are given by (13) and its initial data of r.r.v. by (14). Moreover, for every \(t \geq p + q \), we have \(X_t = \rho(t, p + q)S_0 + \rho(t - 1, p + q)S_1 + \cdots + \rho(t - p - q + 1, p + q)S_{p+q-1} \), where \(S_k = w_{p+q-1}X_k + \cdots + w_kX_{p+q-1} \) (0 \(\leq k \leq p + q - 1 \)) and as in (4) the \(\rho(n, p + q) \) are

\[
\rho(n, p + q) = \sum_{k_0 + 2k_1 + \cdots + (p+q)k_{p+q-1} = t-p-q} \frac{(k_0 + \cdots + k_{p+q-1})!}{k_0! \cdots k_{p+q-1}!} w_0^{k_0} \cdots w_{p+q-1}^{k_{p+q-1}},
\]

with \(\rho(n, n) = 1 \) and \(\rho(n, s) = 0 \) if \(n \leq s - 1 \).
Similarly, for \(t \leq 0 \), by setting \(Y_{p+q-t-1} = X_t \) and \(\hat{w}_0 = \frac{-w_0}{w_{p+q-1}}, \ldots, \hat{w}_j = \frac{-w_{p+j-1}}{w_{p+q-1}}, \hat{w}_{p+q-2} = \frac{-w_{p+q-2}}{w_{p+q-1}}, \hat{w}_{p+q-1} = \frac{1}{w_{p+q-1}} \), we obtain

\[
X_t = \rho(p + q - t - 1, p + q)\hat{S}_0 + \hat{\rho}(p + q - t - 2, p + q)\hat{S}_1 + \cdots + \hat{\rho}(-t, p + q)\hat{S}_{p+q-1},
\]

where \(\hat{S}_k = \hat{w}_{p+q}X_{p+q-k-1} + \cdots + \hat{w}_kX_0 \) (\(0 \leq k \leq p + q - 1 \)) and

\[
\hat{\rho}(n, p + q) = \sum_{k_0 + 2k_1 + \cdots + (p+q)k_{p+q-1} = t-p-q} \frac{(k_0 + \cdots + k_{p+q-1})!}{k_0! \cdots k_{p+q-1}!} \hat{w}_0^{k_0} \cdots \hat{w}_{p+q-1}^{k_{p+q-1}},
\]

with \(\hat{\rho}(n, n) = 1 \) and \(\hat{\rho}(n, s) = 0 \) if \(n \leq s - 1 \).

Example - Consider an ARMA\((2, 2)\) process \(\{X_t; t \in \mathbb{Z}\} \) such that \(P_1(z) = (z - \lambda_0)(z - \lambda_1) \) and \(P_2(z) = (z - \lambda_2)(z - \lambda_3) \), where \(\lambda_0, \lambda_1, \lambda_2, \lambda_3 \) are real numbers satisfying \(\lambda_j \neq \lambda_k \) for \(j \neq k \). Hence, we have \(P(z) = (z - \lambda_0)(z - \lambda_1)(z - \lambda_2)(z - \lambda_3) \). Then, for each \(n \geq 0 \), the Binet formula of \(\rho(n, r) \) is

\[
\rho(n, r) = \Gamma_n(\lambda_j) + \Theta_n(\lambda_j),
\]

where \(\Gamma_n(\lambda_j) = \frac{(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)\lambda_n^{n-1} - (\lambda_0 - \lambda_2)(\lambda_0 - \lambda_3)(\lambda_2 - \lambda_3)\lambda_n^{n-1}}{(\lambda_0 - \lambda_1)(\lambda_0 - \lambda_2)(\lambda_0 - \lambda_3)(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \)

and \(\Theta_n(\lambda_j) = \frac{(\lambda_1 - \lambda_2)(\lambda_0 - \lambda_2)(\lambda_0 - \lambda_3)(\lambda_1 - \lambda_3)(\lambda_1 - \lambda_2)(\lambda_2 - \lambda_3)\lambda_n^{n-1}}{(\lambda_0 - \lambda_1)(\lambda_0 - \lambda_2)(\lambda_0 - \lambda_3)(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \).

Therefore, for \(t \geq 3 \), we obtain,

\[
X_t = \rho(t, 4)S_0 + \rho(t - 1, 4)S_1 + \rho(t - 2, 4)S_2 + \rho(t - 3, 4)S_3,
\]

with \(S_0 = \omega_3X_0 + \omega_2X_1 + \omega_1X_2 + \omega_0X_3, S_1 = \omega_3X_1 + \omega_2X_2 + \omega_1X_3, S_2 = \omega_3X_2 + \omega_2X_3, S_1 = \omega_3X_3, \) where \(\omega_0 = \lambda_0 + \lambda_1 + \lambda_2 + \lambda_3, \omega_1 = \prod_{i \neq j, i, j = 1} \lambda_i \lambda_j, \omega_2 = \prod_{i \neq j, k \neq i, k \neq j} \lambda_i \lambda_j \lambda_k \) and \(\omega_3 = \lambda_0 \lambda_1 \lambda_2 \lambda_3 \).

4 More on some characteristics of an ARMA\((p, q)\) process

In this section we are also concerned by the Hilbert space \(\mathcal{H} = L^2(\Omega, \mathcal{A}, P) \), where \((\Omega, \mathcal{A}, P) \) is a probability space. Consider an ARMA\((p, q)\) process (1), whose white noise \(A_t \) \((t \in \mathbb{Z}) \) is with zero mean \(E(A_t) = 0 \) and constant variance \(\text{var}(A_t) = \sigma^2 \). Thus the sequence of moments \(\{E(X_t)\}_{t \in \mathbb{Z}} \) satisfies the recursive equation \(E[X_{t+1}] = a_0E[X_t] + \cdots + a_{p-1}E[X_{t-p+1}] \). The Fibonacci sequence’s properties, specially the Binet Formula, permits us to get.

Proposition 4.1 Under the preceding data, suppose that \(\lambda_1, \lambda_2, \cdots, \lambda_r \) are the distinct roots of the polynomial \(P(z) = z^p - a_0z^{p-1} - \cdots - a_{p-1} \), of multiplicities \(m_1, \cdots, m_p \) (respectively). Then, we have \(E[X_t] = \sum_{i=1}^r P_i(t)\lambda^i \) (Binet formula), for every \(t \geq 0 \), where each \(P_i(z) \) is a polynomial of degree \(m_i - 1 \) \((1 \leq i \leq r)\).
Following (3)-(4), we manage to have the combinatorial form of $E[X_t]$.

Proposition 4.2 Under the data of Proposition 4.1, we have

$$E[X_t] = \Delta_{p-1}(t)E[X_{p-1}] + \cdots + \Delta_{p-s+1}(t)E[X_{p-1+s}] + \cdots + \Delta_0(t)E[X_0].$$

for every $t \geq p$, where $\Delta_{p-1}(t) = \rho(t-p+1, p)$, $\Delta_{p-s+1}(t) = \sum_{j=0}^{s} a_{p-s+j-1}\rho(t-j, p)$ and $\Delta_0(t) = \sum_{j=0}^{p-1} a_j \rho(t-j, p)$.

Furthermore, we study others characteristics of X_t relying on the precedent results. We begin by the simple case when the $\{X_t; t \in \mathbb{Z}\}$ are mutually independent, the A_t are also mutually independent and X_{t-j} is independent of A_t for $j, t \geq 0$. Thus, we have $\text{var}[X_{t+1}] = a_0^2 \text{var}[X_t] + \cdots + a_p^2 \text{var}[X_{t-p+1}] + (1 + b_0 + \cdots + b_{q-1})\sigma^2$, where $t \in \mathbb{Z}$. Therefore, the sequence $\{\text{var}[X_t]\}_{t \geq 0}$ is a sequence (2) of characteristic polynomial $Q(z) = (z-1)(z^p - a_0 z^{p-1} - \cdots - a_{p-1}^2), whose roots are 1, \lambda_1, \lambda_2, \cdots, \lambda_r$, with multiplicities are $1, m_1, \cdots, m_p$ (respectively). A direct application of the Binet formulas leads to derive the following result.

Proposition 4.3 Under the data of Proposition 4.1, suppose that the X_t are mutually independent, the A_t mutually independent and X_{t-i} is independent of A_t for $t \geq 0$. Let $\lambda_1, \lambda_2, \cdots, \lambda_r$ be the distinct roots of the polynomial $P(z) = z^p - a_0 z^{p-1} - \cdots - a_{p-1}$, of multiplicities m_1, \cdots, m_p (respectively). Then, we have $\text{var}[X_t] = \sum_{i=1}^{r} P_i(t)\lambda_i^2 + K$, where $K \in \mathbb{R}$ and each $P_i(z)$ ($1 \leq i \leq r$) is a polynomial of degree $m_i - 1$, whose coefficients are arisen from the initial conditions $\text{var}[X_0], \cdots, \text{var}[X_{p-1}], \text{var}[X_p]$, either K.

Now, we are going to discuss the general case without setting the independence condition of $\{X_t; t \in \mathbb{Z}\}$. To this aim, we release the combinatorial expression of $\text{var}[X_t]$ from Proposition 4.1, thereby we manage to have the following result.

Proposition 4.4 Under the data of Proposition 4.1, suppose that the A_t are mutually independent and X_{t-i} is independent of A_t for $t \geq 0$. Then, for every $t \geq p$, we have

$$\text{var}[X_t] = \sum_{i=0}^{p-1} \left(\sum_{j=0}^{p-1} \rho(t-j, p) \right)^2 \text{var}[X_t^2] + 2 \sum_{i<j}(i=1, j=2) \alpha_{ij}\text{cov}(X_{p-i}, X_{p-j}),$$

where $\alpha_{ij} = \left(\sum_{k=0}^{i} a_{p-i+k-1}\rho(t-k, p) \right) \left(\sum_{h=0}^{j} a_{p-j+h-1}\rho(t-h, p) \right)$.

When the r.r.v. $X_t (t \in \mathbb{Z})$ are mutually independent, we have the following corollary.
Corollary 4.5 Under the hypothesis of Proposition 4.4, suppose that \(\{X_t; t \in \mathbb{Z}\} \) are mutually independent. Then, we have

\[
\text{var}[X_t] = \sum_{i=0}^{p-1} \left(\sum_{j=0}^{p-1} \rho(t-j,p) \right)^2 \text{var}[X_t^2].
\]

We point out that we present, in Corollary 4.5, another expression of \(\text{var}[X_t] \).

5 Operator methods and recursiveness

In the real case, difference equations of Fibonacci type are also related to operator methods for studying the ARMA\((p,q)\) process. That is, the equation \(\phi(B)X_t = \theta(B)A_t \), where \(B \) is the auto-regressive operator, shows that \(X_t = \psi(B)A_t \) and \(A_t = \Pi(B)X_t \), where \(\psi(B) = \phi(B)^{-1}\theta(B) = 1 + \sum_{j=1}^{\infty} \psi_j B^j \) and \(\Pi(B) = \theta(B)^{-1}\phi(B) = 1 + \sum_{j=1}^{\infty} \pi_j B^j \) such that \(\sum_{j=1}^{\infty} \psi_j^2 < +\infty \) and \(\sum_{j=1}^{\infty} \pi_j^2 < +\infty \). For computing the \(\psi_j \), in terms of the \(a_j \) \((0 \leq j \leq p-1)\) and \(b_j \) \((0 \leq j \leq q-1)\), we use the equation \(\phi(B)\psi(B) = \theta(B) \). A straightforward computation shows that \(\psi_1 = a_0 - b_0 \), \(\psi_j = \sum_{k=0}^{j-1} a_k \psi_{j-k+1} + a_{j-1} - b_{j-1}(1 < j < p-1) \), \(\psi_p = \sum_{k=0}^{p-1} a_k \psi_{p-k+1} + a_{p-1} - b_{p-1}\epsilon_{p,q} \) (with \(\epsilon_{p,q} = 1 \) for \(p \leq q \) and \(\epsilon_{p,q} = 0 \) otherwise), and

\[
\psi_{n+1} = a_0\psi_n + \cdots + a_{p-1}\psi_{n-p+1}, \quad \text{for} \quad n \geq \text{max}(p, q) - 1. \tag{15}
\]

Similarly, for exhibiting the \(\pi_j \) in terms of the \(a_j \) \((0 \leq j \leq p-1)\) and \(b_i \) \((0 \leq i \leq q-1)\), a direct computation implies that \(\pi_1 = a_0 - b_0 \), \(\pi_j = \sum_{k=0}^{j-1} b_k \pi_{j-k+1} + a_{j-1} - b_{j-1}(1 < j < q-1) \), \(\pi_q = \sum_{k=0}^{q-1} a_k \psi_{p-k+1} + \epsilon_{p,q} a_{p-1} - b_{p-1} \) (with \(\epsilon_{p,q} = 1 \) for \(p \leq q \) and \(\epsilon_{p,q} = 0 \) otherwise), and

\[
\pi_{n+1} = b_0\pi_n + \cdots + b_{q-1}\pi_{n-q+1}, \quad \text{for} \quad n \geq \text{max}(p, q) - 1. \tag{16}
\]

The characteristic polynomial of (15) and (16) are \(P_1(z) = z^p - a_0 z^{p-1} - \cdots - a_{p-1} \) and \(P_2(z) = z^q - b_0 z^{q-1} - \cdots - b_{q-1} \). It’s easy to see that \(P_1(z) = z^p \phi(1/z) \) and \(P_2(z) = z^q \theta(1/z) \). Therefore, the stationary and invertible ARMA\((p,q)\) process can be described as follows.

Proposition 5.1 Let \(\{X_t; t \in \mathbb{Z}\} \) be an ARMA\((p,q)\) process, with associated white noise is \(\{A_t; t \in \mathbb{Z}\} \). Then, the following assertions are equivalent:

(i) \(\{X_t; t \in \mathbb{Z}\} \) is stationary (respectively invertible),

(ii) For every root \(\lambda \) of \(P_1(z) \) (respectively \(P_2(z) \) we have \(|\lambda| < 1 \). Moreover, we have \(\lim_{n \to +\infty} \psi_n = 0 \) and \(\lim_{n \to +\infty} \pi_n = 0 \).

The last affirmation of Proposition 5.1 is an immediate consequence of the Binet formula of (15) and (16) (see [6], [9], for example). Moreover, if we
Recursiveness in Hilbert spaces and application

suppose that a_j ($0 \leq j \leq p-1$) and b_j ($0 \leq j \leq q-1$) are nonnegative, we can derive the asymptotic behavior of the two sequences $\{\psi_n\}_{n \geq 0}$ and $\{\pi_n\}_{n \geq 0}$, by using results of [6], [11].

References

Received: June 5, 2014; Published: December 1, 2014