A Note on Sums of Greatest (Least) Prime Factors

Rafael Jakimczuk

Division Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina
jakimczu@mail.unlu.edu.ar

Copyright © 2013 Rafael Jakimczuk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(a_m(n) \) be the \(m \)-th power of the least prime factor in the prime factorization of \(n \). We prove the asymptotic formula

\[
\sum_{i=2}^{n} a_m(i) \sim \frac{1}{m+1} \frac{n^{m+1}}{\log n}.
\]

Let \(b_m(n) \) be the \(m \)-th power of the greatest prime factor in the prime factorization of \(n \). We prove the asymptotic formula

\[
\sum_{i=2}^{n} b_m(i) \sim \frac{\zeta(m+1)}{m+1} \frac{n^{m+1}}{\log n},
\]

where \(\zeta(s) \) is the Riemann’s Zeta Function. Consequently

\[
\lim_{n \to \infty} \frac{\sum_{i=2}^{n} b_m(i)}{\sum_{i=2}^{n} a_m(i)} = \zeta(m+1).
\]

In particular if \(m = 1 \) we obtain

\[
\lim_{n \to \infty} \frac{\sum_{i=2}^{n} b_1(i)}{\sum_{i=2}^{n} a_1(i)} = \zeta(2) = \frac{\pi^2}{6}.
\]

Mathematics Subject Classification: 11A41

Keywords: Sums of greatest (least) prime factors
1 Introduction and Lemmas

Let m be a positive integer and let $b_m(n)$ be the m-th power of the greatest prime factor in the prime factorization of n. For example if $n = 12$ then $b_1(12) = 3$ and $b_4(12) = 3^4$, if $n = 18$ then $b_1(18) = 3$ and $b_2(18) = 3^2$, if $n = 5$ then $b_1(5) = 5$ and $b_4(5) = 5^4$. In this note we prove the asymptotic formula

$$\sum_{i=2}^{n} b_m(i) \sim \frac{\zeta(m+1) n^{m+1}}{m+1 \log n}. \quad (1)$$

If $m = 1$ is asymptotic formula is well-known (see either [1] or [4]). In the proof of (1) we use a similar method of proof already used in the proof of other theorems (see [3]).

The following lemma is a consequence of the prime number theorem (see for example [2]).

Lemma 1.1 Let m be a nonnegative integer and let $s_m(x)$ be the sum of the m-th powers of the primes not exceeding x. We have the following asymptotic formula

$$s_m(x) = \sum_{p \leq x} p^m = \frac{x^{m+1}}{(m+1) \log x} + h(x) \frac{x^{m+1}}{\log x}, \quad (2)$$

where p denotes a positive prime and $h(x) \to 0$. Note that $h(x)$ depends of m.

Note that if $m = 0$ equation (2) becomes the Prime Number Theorem. That is, $s_0(x) = \pi(x)$, where $\pi(x)$ is the prime counting function.

Let m be a positive integer and let $a_m(n)$ be the m-th power of the least prime factor in the prime factorization of n. For example if $n = 12$ then $a_1(12) = 2$ and $a_4(12) = 2^4$, if $n = 18$ then $a_1(18) = 2$ and $a_2(18) = 2^2$, if $n = 5$ then $a_1(5) = 5$ and $a_4(5) = 5^4$. In this note we prove the asymptotic formula

$$\sum_{i=2}^{n} a_m(i) \sim \frac{n^{m+1}}{(m+1) \log n}. \quad (3)$$

We also shall need the following lemma.

Lemma 1.2 Let m be a positive integer. We have the following formula

$$\sum_{j=1}^{\infty} j \left(\frac{1}{j^{m+1}} - \frac{1}{(j+1)^{m+1}} \right) = \sum_{j=1}^{\infty} \left(\frac{1}{j^m} - \frac{j}{(j+1)^{m+1}} \right) = \zeta(m+1),$$

where $\zeta(s)$ is the Riemann's Zeta Function.
Proof. We have
\[
\sum_{j=1}^{n} \left(\frac{1}{j^m} - \frac{j}{(j+1)^{m+1}} \right) - \sum_{j=1}^{n} \frac{1}{j^{m+1}} = \sum_{j=1}^{n} \left(\frac{j-1}{j^{m+1}} - \frac{j}{(j+1)^{m+1}} \right).
\]
Therefore
\[
\sum_{j=1}^{n} \left(\frac{1}{j^m} - \frac{j}{(j+1)^{m+1}} \right) = \left(\sum_{j=1}^{n} \frac{1}{j^{m+1}} \right) - \frac{n}{(n+1)^{m+1}}.
\]
Now
\[
\zeta(m+1) = \sum_{j=1}^{\infty} \frac{1}{j^{m+1}} = \lim_{n \to \infty} \sum_{j=1}^{n} \frac{1}{j^{m+1}}.
\]
The lemma is proved.

Note that a consequence of equation (2) is the following inequality
\[
s_m(x) = \sum_{p \leq x} p^m < h \frac{x^{m+1}}{(m+1) \log x}, \quad (4)
\]
where \(h > 1 \). This inequality holds for \(x \geq x_0 \), where \(x_0 \) depend of \(m \).

2 Main Results

Now, we shall prove the mentioned results. Namely, formulas (1) and (3).

Theorem 2.1 We have the following asymptotic formula
\[
\sum_{i=2}^{n} a_m(i) \sim \frac{1}{m+1} \frac{n^{m+1}}{\log n}, \quad (5)
\]
where \(m \) is an arbitrary but fixed positive integer.

Proof. Let \(A(n,p) \) be the number of positive integer not exceeding \(n \) such that their least prime factor is the prime \(p \). Therefore
\[
\sum_{2 \leq p \leq n} A(n,p) = n - 1.
\]
We have
\[
\sum_{i=2}^{n} a_m(i) = \sum_{2 \leq p \leq n} p^m A(n,p) = \sum_{2 \leq p \leq \sqrt[n]{x}} p^m A(n,p) + \sum_{x^{1/3} < p \leq n} p^m A(n,p), \quad (6)
\]
where \(k \geq 2 \) is a positive integer.

Consider the first sum in (6). Namely

\[
\sum_{2 \leq p \leq \frac{n}{k}} p^m A(n, p).
\]

We have the following trivial inequality

\[
A(n, p) \leq \left\lfloor \frac{n}{p} \right\rfloor \leq \frac{n}{p}.
\]

Therefore (see (4))

\[
\sum_{2 \leq p \leq \frac{n}{k}} p^m A(n, p) \leq \sum_{2 \leq p \leq \frac{n}{k}} p^m \frac{n}{p} = n \sum_{2 \leq p \leq \frac{n}{k}} p^{m-1} \leq nh \frac{(\frac{n}{\lambda})^m}{m \log \frac{n}{\lambda}}
\]

\[
= \frac{h(m+1)}{mk^m} \frac{1}{1 - \frac{\log k}{\log n}} (m+1) \log n
\]

\[
\leq \left(\frac{h(m+1)}{mk^m} + \lambda \right) \frac{n^{m+1}}{(m+1) \log n} \quad (\lambda > 0)
\]

That is

\[
\sum_{2 \leq p \leq \frac{n}{k}} p^m A(n, p) = g(n) \frac{n^{m+1}}{(m+1) \log n}, \quad (7)
\]

where

\[
0 < g(n) < \frac{h(m+1)}{mk^m} + \lambda \quad (\lambda > 0). \quad (8)
\]

Consider the second inequality in (6). Namely

\[
\sum_{\frac{n}{k} < p \leq n} p^m A(n, p).
\]

If \(n \) is large then \(k < p \). On the other hand \(kp > n \). Consequently the unique multiple of \(p \) less than or equal to \(n \) such that \(p \) is its least prime factor is \(p \).

That is, we have \(A(n, p) = 1 \). Therefore (see lemma 1.1)

\[
\sum_{\frac{n}{k} < p \leq n} p^m A(n, p) = \sum_{2 \leq p \leq n} p^m - \sum_{2 \leq p \leq \frac{n}{k}} p^m = \frac{n^{m+1}}{(m+1) \log n} + h(n) \frac{n^{m+1}}{\log n}
\]

\[
- \left(\frac{n}{\lambda} \right)^{m+1} - h \left(\frac{n}{k} \right) \left(\frac{n}{\lambda} \right)^{m+1} \frac{(\frac{n}{\lambda})^{m+1}}{\log (\frac{n}{\lambda})} = \left(1 - \frac{1}{k^{m+1}} \right) \frac{n^{m+1}}{(m+1) \log n}
\]

\[
+ \left(h(n) - h \left(\frac{n}{k} \right) \frac{1}{k^{m+1}} \frac{1}{\log n} \right) \frac{n^{m+1}}{\log n} = \left(1 - \frac{1}{k^{m+1}} + q_k(n) \right) \frac{n^{m+1}}{(m+1) \log n}
\]

\[
+ p_k(n) \frac{n^{m+1}}{\log n} = \frac{n^{m+1}}{(m+1) \log n} - \frac{1}{k^{m+1}} \frac{n^{m+1}}{(m+1) \log n} + r_k(n) \frac{n^{m+1}}{(m+1) \log n}.
\]
Sums of greatest (least) prime factors

where \(h(n) \to 0 \), \(q_k(n) \to 0 \), \(p_k(n) \to 0 \) and \(r_k(n) \to 0 \). That is

\[
\sum_{\frac{2}{k} < p \leq n} p^m A(n, p) = \frac{n^{m+1}}{(m+1) \log n} - \frac{1}{k^{m+1}} \frac{n^{m+1}}{(m+1) \log n} + r_k(n) \frac{n^{m+1}}{(m+1) \log n}.
\]

(9)

where \(r_k(n) \to 0 \).

We have

\[
\sum_{i=2}^{n} a_m(i) = \frac{1}{m+1} \frac{n^{m+1}}{\log n} + f(n) \frac{1}{m+1} \frac{n^{m+1}}{\log n}.
\]

(10)

Substituting equations (7) and (9) into (6) we obtain

\[
\sum_{i=2}^{n} a_m(i) = \frac{n^{m+1}}{(m+1) \log n} + \left(-\frac{1}{k^{m+1}} + r_k(n) + g(n) \right) \frac{n^{m+1}}{(m+1) \log n}.
\]

Consequently

\[
f(n) = -\frac{1}{k^{m+1}} + r_k(n) + g(n).
\]

(11)

Let \(\epsilon > 0 \). If we choose \(k \) sufficiently large then

\[
\left| -\frac{1}{k^{m+1}} \right| < \frac{\epsilon}{3}, \quad |r_k(n)| < \frac{\epsilon}{3}, \quad 0 < g(n) < \frac{\epsilon}{3}.
\]

Therefore we have (see (11))

\[
|f(n)| < \epsilon,
\]

if \(n \) is sufficiently large.

Now, \(\epsilon \) is arbitrarily little. Therefore

\[
\lim_{n \to \infty} f(n) = 0.
\]

(12)

Equations (10) and (12) give (5). The theorem is proved.

Theorem 2.2 We have the following asymptotic formula

\[
\sum_{i=2}^{n} b_m(i) \sim \frac{\zeta(m+1)}{m+1} \frac{n^{m+1}}{\log n},
\]

(13)

where \(m \) is an arbitrary but fixed positive integer.

Proof. Let \(B(n, p) \) be the number of positive integers not exceeding \(n \) such that their greatest prime factor is the prime \(p \). Therefore

\[
\sum_{2 \leq p \leq n} B(n, p) = n - 1.
\]
We have
\[
\sum_{i=2}^{n} b_m(i) = \sum_{2 \leq p \leq n} p^m B(n, p) = \sum_{2 \leq p \leq \frac{n}{k+1}} p^m B(n, p) + \sum_{\frac{n}{k+1} < p \leq \frac{n}{k}} p^m B(n, p) + \sum_{\frac{n}{k} < p \leq n} p^m B(n, p).
\]
(14)

Consider the first sum in (14). Namely
\[
\sum_{\frac{n}{k+1} < p \leq \frac{n}{k}} p^m B(n, p).
\]

We have the following trivial inequality
\[
B(n, p) \leq \left\lfloor \frac{n}{p} \right\rfloor \leq \frac{n}{p}.
\]

As in theorem 2.1 we obtain
\[
\sum_{2 \leq p \leq \frac{n}{k+1}} p^m B(n, p) = \frac{g(n)}{n^{m+1}} (m+1) \log n,
\]
(15)

where
\[
0 < g(n) < \frac{h(m+1)}{m(k+1)^m} + \lambda \quad (\lambda > 0).
\]
(16)

Now, consider the sum (see (14))
\[
\sum_{\frac{n}{j+1} < p \leq \frac{n}{j}} p^m B(n, p) \quad (j = 1, 2, \ldots, k).
\]
(17)

If \(n \) is large then \(j \leq k < p \). On the other hand \(jp \leq n \) and \((j + 1)p > n \). Consequently the multiples of \(p \) less than or equal to \(n \) such that \(p \) is their greatest prime factor are \(p, 2p, \ldots, jp \). That is, we have \(A(n, p) = j \). Consequently (see (17))
\[
\sum_{\frac{n}{j+1} < p \leq \frac{n}{j}} p^m B(n, p) = \frac{n^m}{j} (m+1) \log \frac{n}{j} \quad (j = 1, 2, \ldots, k).
\]
(18)

Lemma 1.1 gives
\[
\sum_{\frac{n}{j+1} < p \leq \frac{n}{j}} p^m = \frac{\left(\frac{n}{j} \right)^{m+1}}{(m+1) \log \left(\frac{n}{j} \right)} + \frac{\left(\frac{n}{j} \right)^{m+1}}{(m+1) \log \left(\frac{n}{j} \right)} - \frac{\left(\frac{n}{j+1} \right)^{m+1}}{(m+1) \log \left(\frac{n}{j+1} \right)}
\]
where \(h(n) \to 0 \), \(q_j(n) \to 0 \), \(p_j(n) \to 0 \) and \(r_j(n) \to 0 \). That is

\[
\sum_{\frac{p}{m+1} < p \leq \frac{m}{j}} p^m = \left(\frac{1}{j^{m+1}} - \frac{1}{(j+1)^{m+1}} \right) \frac{n^{m+1}}{(m+1) \log n} + r_j(n) \frac{n^{m+1}}{(m+1) \log n}, \tag{19}
\]

where \(r_j(n) \to 0 \).

Substituting (19) into (18) we obtain

\[
\sum_{\frac{p}{m+1} < p \leq \frac{m}{j}} p^m B(n, p) = \left(\frac{1}{j^m} - \frac{j}{(j+1)^m} \right) \frac{n^{m+1}}{(m+1) \log n} + r_j'(n) \frac{n^{m+1}}{(m+1) \log n}, \quad (j = 1, 2, \ldots, k), \tag{20}
\]

where \(r_j'(n) = j \ r_j(n) \to 0 \).

We have

\[
\sum_{i=2}^{n} b_m(i) = \frac{\zeta(m+1) n^{m+1}}{m+1 \log n} f(n) \frac{n^{m+1}}{m+1 \log n}. \tag{21}
\]

Substituting (15) and (20) into (14) we find that (see lemma 1.2)

\[
\sum_{i=2}^{n} b_m(i) = \left(g(n) + \sum_{j=1}^{k} \left(\frac{1}{j^m} - \frac{j}{(j+1)^m} \right) + \sum_{j=1}^{k} r_j'(n) \right) \frac{n^{m+1}}{(m+1) \log n}
\]

\[
= \frac{\zeta(m+1) n^{m+1}}{m+1 \log n} f(n) \frac{n^{m+1}}{m+1 \log n}.
\]

\[
= \frac{\zeta(m+1) n^{m+1}}{m+1 \log n} f(n) \frac{n^{m+1}}{m+1 \log n}.
\]
Consequently
\[f(n) = g(n) - \sum_{j=k+1}^{\infty} \left(\frac{1}{j^m} - \frac{j}{(j + 1)^{m+1}} \right) + \sum_{j=1}^{k} r'_j(n). \] (22)

Let \(\epsilon > 0 \). If we choose \(k \) sufficiently large then
\[0 < \sum_{j=k+1}^{\infty} \left(\frac{1}{j^m} - \frac{j}{(j + 1)^{m+1}} \right) < \frac{\epsilon}{3}, \quad 0 < g(n) < \frac{\epsilon}{3}. \]

On the other hand, since
\[r'_j(n) \to 0 \quad (j = 1, 2, \ldots, k), \]
if \(n \) is sufficiently large then we have
\[\left| r'_j(n) \right| < \frac{\epsilon}{3k} \quad (j = 1, 2, \ldots, k). \]

Therefore we have (see (22))
\[\left| f(n) \right| < \epsilon. \]

Now, \(\epsilon \) is arbitrarily little. Hence
\[\lim_{n \to \infty} f(n) = 0. \] (23)

Equations (21) and (23) give (13). The theorem is proved.

Corollary 2.3 The following limits hold
\[\lim_{n \to \infty} \frac{\sum_{i=2}^{n} b_m(i)}{\sum_{i=2}^{n} a_m(i)} = \zeta(m + 1). \]

In particular if \(m = 1 \) we obtain
\[\lim_{n \to \infty} \frac{\sum_{i=2}^{n} b_1(i)}{\sum_{i=2}^{n} a_1(i)} = \zeta(2) = \frac{\pi^2}{6}. \]

Proof. It is an immediate consequence of Theorem 2.1 and Theorem 2.2. The corollary is proved.

Let \(c \) be a composite number. If we consider only composite numbers in Corollary 2.3 then we have the following corollary.

Corollary 2.4 We have the following limit
\[\lim_{n \to \infty} \frac{\sum_{c \leq n} b_m(c)}{\sum_{c \leq n} a_m(c)} = \infty. \]
Proof. Let p be a prime number. We have $a_m(p) = b_m(p) = p^m$. Therefore (Theorem 2.1, Theorem 2.2 and Lemma 1.1)

$$\frac{\sum_{c \leq n} b_n(c)}{\sum_{c \leq n} a_m(c)} = \frac{\sum_{i=2}^{n} b_m(i) - \sum_{p \leq n} b_m(p)}{\sum_{i=2}^{n} a_m(i) - \sum_{p \leq n} a_m(p)} = \frac{\sum_{i=2}^{n} b_m(i) - \sum_{p \leq n} p^m}{\sum_{i=2}^{n} a_m(i) - \sum_{p \leq n} p^m}$$

$$= \frac{\zeta(m+1)-1}{m+1} \frac{n^{m+1}}{\log n} + o \left(\frac{n^{m+1}}{\log n} \right) = \frac{\zeta(m+1)-1}{m+1} + o(1).$$

The corollary is proved.

Let p^k be a prime power. We have $a_m(p^k) = b_m(p^k) = p^m$. On the other hand, if d is not a prime power then $a_m(d) < b_m(d)$. We have the following corollary

Corollary 2.5 The following limit holds

$$\lim_{n \to \infty} \frac{\sum_{d \leq n} b_m(d)}{\sum_{d \leq n} a_m(d)} = \infty.$$

Proof. We have

$$\sum_{p \leq n} p^m \leq \sum_{p^k \leq n} p^m \leq \sum_{i=2}^{n} a_m(i).$$

Consequently (Lemma 1.1 and Theorem 2.1)

$$\sum_{p^k \leq n} p^m \sim \frac{1}{m+1} n^{m+1}.$$

(24)

Therefore (Theorem 2.1, Theorem 2.2 and equation (24))

$$\frac{\sum_{d \leq n} b_m(d)}{\sum_{d \leq n} a_m(d)} = \frac{\sum_{i=2}^{n} b_m(i) - \sum_{p^k \leq n} b_m(p^k)}{\sum_{i=2}^{n} a_m(i) - \sum_{p^k \leq n} a_m(p^k)} = \frac{\sum_{i=2}^{n} b_m(i) - \sum_{p^k \leq n} p^m}{\sum_{i=2}^{n} a_m(i) - \sum_{p^k \leq n} p^m}$$

$$= \frac{\zeta(m+1)-1}{m+1} \frac{n^{m+1}}{\log n} + o \left(\frac{n^{m+1}}{\log n} \right) = \frac{\zeta(m+1)-1}{m+1} + o(1).$$

The corollary is proved.

ACKNOWLEDGEMENTS. The author is very grateful to Universidad Nacional de Luján.

References

Received: February 10, 2013