On Poset of Subhypergroup and Hyper Lattices

A. D. Lokhande

Department of Mathematics
Yashwantrao chavan Warana Mahavidyalaya
Warana nagar, Kolhapur, India
aroon_lokhande@gmail.com

Aryani Gangadhara

Department of Mathematics (MCA)
JSPM’s Rajarshi Shahu College of Enginering
Tathawade, Pune, India
aryani.santosh@gmail.com

Copyright © 2013 A. D. Lokhande and Aryani Gangadhara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this Paper we have described the Poset of Sub(H) for remarkable classes such as rotary closed subhypergroups of Permutation group related to open problem given in [3]. Also we Prove that Sym_n(G) is a hyper group. We prove some necessary and sufficient condition for Poset of subhypergroup to be a hypersemilattice. Also we prove that Sub (G) is coincide with the lattice subgroup of hypergroup of permutation group. Finally we prove Principal Filter is hyper lattice.

Mathematics Subject Classifications: Primary -20N20, Secondary-06A11

Keywords: Hyper group, Permutation group, Rotary closed subhypergroup, Hyperlattice Hypersemilattice, Principal Filter
Introduction

The theory of Hyperstructures was introduced in 1934 by Marty [1] at the 8th Congress of Scandinavian mathematicians. This theory has been subsequently developed by Corsini[4], Mittas [2] and by various authors. Basic definitions and propositions are found in [4]. Marius Tarauceanu contributed to the study of Poset of subhypergroup of a hypergroup. He had drawn conclusions on Poset (Sub(H),⊆) and he had also given some open problems on above stated Poset and lattices and description about rotary mapping is given in[6] and [8]. These conclusions and open problems constitute the starting point for our paper. In this section, we study the Poset of subhypergroup of a permutation group using rotary closed subhypergroup and we study the necessary and sufficient condition for Poset to be a hypersemilattice. Finally we study the structure of Principal Filter which constitutes a hyperlattice. Notations and definitions are used from [3],[7],[6].

1. Basic Notations and Terminology

Definition 1.1 [3]: A hyper Operation on H is a map ⊙:H x H → P*(H).

Definition 1.2[3]: If the hyperoperation” ⊙ “is associative and a ⊙ H=H=H ⊙ a, then (H, ⊙) is a Hypergroup.

Definition 1.3 [3]: A hyper group (H, ⊙) is called a join space if “⊙” is commutative and a/b ∼ c/d ⇒ a ⊙ d ∼ b ⊙ c, where a/b = {x ∈ H/a ∈ b ⊙ x}

Definition 1.4[4]: Let L be a non-empty set and ⊕ : L x L → P(L) be a hyperoperation , where P(L) is a power set of L and P*(L) =P(L) -{Ø} and ⊗ : L x L → L be an operation. Then (L, ⊗ ⊕) is a hyperlattice if for all a, b, c ∈ L.
1. a ∈ a ⊕ a, a ⊗ a=a
2. a ⊕ b=b ⊕ a, a ⊗ b=b ⊗ a
3. (a ⊕ b) ⊕ c=a ⊕ (b ⊕ c) ,(a⊗ b) ⊗ c=a ⊗ (b ⊗ c).
4. a ⊙ [a ⊗ (a ⊕ b)] ∩ [a ⊕ (a ⊗ b)]
5. a ∈ a ⊕ b implies a ⊗ b=b.

Definition1.5[7]: Let L be a non-empty set with a hyper operation ⊗ On L satisfying the following conditions, for all a, b, c ∈ L
1. a ∈ a ⊗ a (Idempotent)
2. a \circ b = b \circ a \quad \text{(Commutative)}
3. (a \circ b) \circ c = a \circ (b \circ c). \quad \text{(Associative)}

Then \((L, \circ)\) is called a hypersemilattice.

Definition 1.6[7]: Let \((L, \circ)\) be a hypersemilattice. An element a \in L is called absorbent element of L if it satisfies c \circ a a \circ c for all c \in L. An element b \in L is called fixed element of L if it satisfies b \circ c = \{b\} for all c \in L.

2. Rotary closed subhypergroups

Definition 2.1 [6]: Let G be a group, let Sym(G) be the group of all permutations on G, and let Sym\(_e\)(G) be the stabilizer of the identity e \in G in Sym(G). Given two permutations \(\Phi, \Psi\) from Sym\(_e\)(G) and an element g \in G, we define a new permutation \(\Phi \circ_g \Psi = L_{\Phi(g)}^{-1} \circ L_g \Psi\), where \(L_{\Phi(g)}^{-1} \circ L_g \in\) Sym(G) are left multiplications by the elements \(\Phi(g)\) and \(g\). A subgroup H of Sym\(_e\)(G) closed under taking products of this form is called rotary closed i.e H \subseteq Sym\(_e\)(G) is called rotary close provided \(\Phi \circ_g \Psi \in H\) for all \(\Phi, \Psi \in H\) and \(g \in G\).

Theorem 2.2: Let Sym\(_e\)(G) be the stabilizer of the identity e \in G in Sym(G) then Sym\(_e\)(G) with binary operation \(\circ\) is a hyper group.

Proof: Let us define \(\Phi \circ_g \Psi = \{\Phi \circ_g \Psi/g \in G\}\). Let \(\Phi\) be arbitrary permutations of Sym\(_e\)(G). Suppose \(\Psi \in\) Sym\(_e\)(G) is arbitrary and let \(\Psi = L_g^{-1} \Phi L_{\Phi(g)} \Psi\). Then \(\Phi \circ_g \Psi = \Psi\). So, Sym\(_e\)(G) = \(\Phi \circ_g\) Sym\(_e\)(G). Let \(\Phi, \Psi, \Psi\) be permutations of Sym\(_e\)(G). \((\Phi \circ_g \Psi) \circ_g \Psi = L_{\Phi(g)} \circ_g \Psi L_g \Psi = L_{\Phi(g)} \Psi L_g = L_{\Phi(g)} \Psi L_g \Psi = L_{\Phi(g)} \Psi L_g \Psi\). Hence the result. \(\blacksquare\)

Theorem 2.3: For a hypergroup Sym\(_e\)(G), Sub (Sym\(_e\)(G)) = L (Sym\(_e\)(G)) , where Sub(Sym\(_e\)(G)) is a rotary closed subhypergroup of a Permutation group G and \(L(\text{Sym}\(_e\)(G))\) is set of all Subhypergroups of a Hyper group Sym\(_e\)(G).

Proof: Let \(k \in\) Sub (Sym\(_e\)(G)) i.e. \(k\) is a subhypergroup of a permutation group. Let \(\Phi \circ \Psi \in K\) and let \(\Psi = L_g^{-1} \Phi L_{\Phi(g)} \Psi\). Then \(\Phi \Psi = \Phi \circ \Psi = L_{\Phi(g)}^{-1} \Phi L \Psi\). So \(\Psi = L_g^{-1} \Phi L_{\Phi(g)}^{-1} \circ L_{\Phi(g)}^{-1} \Phi L \Psi\). It implies \(\Psi = \Phi \circ \Psi = L_{\Phi(g)}^{-1} \Phi L \Psi\). That is \(K \subseteq L (\text{Sym}\(_e\)(G))\). Conversely, Let \(K \subseteq L (\text{Sym}\(_e\)(G))\) and \(\Phi \in\) Sym\(_e\)(G) and for any
element $g \in G$. Consider $\Phi \circ g \psi = L_{\phi(g)}^{-1} \Phi L \psi$ for any $\psi \in \text{Sym}_e (G)$. Let $\psi = L_g^{-1} \Phi^{-1} L_{\phi(g)} \Phi$, which gives $\Phi \circ g \psi = \Phi$, that is $\Phi \in \Phi \circ g \text{Sym}_e (G)$. $\text{Sym}_e (G) \subseteq \Phi \circ g \text{Sym}_e (G)$ Now let us consider $\gamma \in \Phi \circ g \text{Sym}_e (G)$. By definition of rotary closed subhypergroup $\gamma \in \text{Sym}_e (G)$, that is $\Phi \circ g \text{Sym}_e (G) \subseteq \text{Sym}_e (G)$. Therefore by both the results $\text{Sym}_e (G) = \Phi \circ g \text{Sym}_e (G)$. Similarly we can prove $\text{Sym}_e (G) \circ g \Phi = \text{Sym}_e (G)$. This is reproductivity law. By theorem [2.2], it is associative. Therefore $K \in \text{Sub} (\text{Sym}_e (G))$. Hence the result.

Theorem 2.4 : A necessary and sufficient condition for a poset of $(\text{Sub}(\text{Sym}_e (G), \circ))$ is a Hypersemilattice is that $\Phi \circ g \psi = \Phi$. Provided $\text{Sub}(\text{Sym}_e (G))$ is a rotary closed and Φ is a fixed element of $\text{Sub}(\text{Sym}_e (G))$.

Proof: Let $(\text{Sub}(\text{Sym}_e (G), \circ))$ is a Poset of rotary closed subhypergroup of a hyper group $\text{Sym}_e (G)$. To prove Poset $(\text{Sub}(\text{Sym}_e (G), \circ))$ is a hypersemilattice, for any $\Phi, \psi \in \text{Sym}_e (G)$, let $\Phi \circ g \psi \in \text{Sub}(\text{Sym}_e (G))$ as it is rotary closed and $\Phi \circ g \psi = L_{\phi(g)}^{-1} \Phi L \psi$ where $g \in G$. And let us define $\psi = L_g^{-1} \Phi^{-1} L_{\phi(g)} \Phi$, then clearly $\Phi \circ g \psi = \Phi$. So it is well-defined. Obviously by the definition $\Phi \in \Phi \circ g \psi$. So $\circ g$ is idempotent. Let $\Phi \circ \psi$ and $\psi \circ \Phi$, therefore $\Phi \circ g \psi = \Phi$ and $\psi \circ g \Phi = \psi$ by well-defined statement. But $(\text{Sub}(\text{Sym}_e (G), \circ))$ is Poset. By Antisymmetry Property, if $\Phi \circ \psi$ and $\psi \circ \Phi$ belongs to $\text{Sym}_e (G)$, then $\psi = \Phi$. Therefore $\Phi \circ g \psi = \psi \circ g \Phi$. So $\circ g$ is Commutative. Let $(\Phi \circ g \psi \circ g \gamma = \Phi \circ g \gamma\Phi = \Phi$ and similarly $\Phi \circ g (\psi \circ \gamma) = \Phi \circ g \psi = \Phi$. Therefore from both the results $\circ g$ is associative. Hence Poset of $(\text{Sub}(\text{Sym}_e (G), \circ))$ is Hypersemilattice. Conversely, let $(\text{Sub}(\text{Sym}_e (G), \circ))$ is Hypersemilattice. To prove it is a Poset. Let $\Phi \in \text{Sym}_e (G)$. As $(\text{Sub}(\text{Sym}_e (G), \circ))$ is hypersemilattice and as Φ is a fixed element, by definition of fixed element $\Phi \circ g \Phi = \Phi$. Therefore $\circ g$ is reflexive. Secondly, let $\Phi, \psi \in \text{Sym}_e (G)$. So $\Phi \circ g \psi = \Phi$ and $\psi \circ g \Phi = \psi$, but by commutativity of hypersemilattice $\Phi \circ g \psi = \psi \circ g \Phi$, this implies $\Phi = \psi$. It proves Anti Symmetry. To prove transitivity, let $\Phi, \psi, \gamma \in \text{Sym}_e (G)$ and let $\Phi \circ \psi$ implies $\Phi \circ g \psi = \Phi$ and $\psi \circ g \gamma$ implies $\psi \circ g \gamma = \psi$. Now consider $\Phi \circ \gamma$ that is $\Phi \circ g \gamma = (\Phi \circ g \psi) \circ g \gamma$, by associativity of hypersemilattice $(\Phi \circ g \psi \circ g \gamma = \Phi \circ g (\psi \circ g \gamma)) = \Phi \circ g \psi = \Phi$ so this gives $\Phi \circ g \gamma = \Phi$. Therefore $\Phi \circ \gamma$. This proves Transitivity. Therefore $(\text{Sub}(\text{Sym}_e (G), \circ))$ is Poset.
3. Principal Filter

Example 3.1[3]: Let (L, \wedge, V) be a complete lattice and for every a \in L, denoted by F(a) the principal filter of L generated by a (i.e. F(a) = \{x \in L / a \leq x\}). Then L is join space under the hyper operation a \circ b = F(a \wedge b), for all a, b \in L.

Property 3.2[3]: For the join space (L, \circ) given by example [3.1], the following equality holds.

\[\text{Sub (L)} = F(L) = \{F(a) / a \in L\}. \]

Theorem 3.3: (F(L), \otimes, \oplus) is hyper lattice.

Proof: Let x, y \in F(a), then by [3.1] x \leq a and b \leq x. Let x \in F(a) it implies x \in F(a) always. Therefore F(x) \subseteq F(a) \oplus F(x). Let x \in F(a) \oplus F(b). So x \in F(a) or x \in F(b), i.e. a \leq x or b \leq x. or otherwise b \leq x or a \leq x. So x \in F(b) or x \in F(a). Therefore x \in F(b) \oplus F(a). So F(a) \oplus F(b) \subseteq F(b) \oplus F(a). Similarly we can prove F(b) \oplus F(a) \subseteq F(a) \oplus F(b). \oplus is commutative. We know that [F(a) \oplus F(b)] \oplus F(c) = \{x \in L / a \oplus b \leq x\} \oplus F(c) = \{p \in L / x \oplus c \leq p\} = \{a \oplus (b \oplus c) \leq p\} = \{a \oplus y \leq p / b \oplus c \leq y\} = F(a) \oplus [F(b) \oplus F(c)]. \oplus is associative. Similarly we can prove for \otimes. To prove F(a) \in [F(a) \otimes (F(a) \oplus F(b))] \cap [F(a) \oplus (F(a) \otimes F(b))]. Consider let x \in F(a) \otimes (F(a) \oplus F(b)) = \{x \in L/ a \otimes (a \oplus b) \leq x\} = \{x \in L/ a \leq x\} = \{x \in L/ a \oplus (a \otimes b) \leq x\}. Therefore F(a) \in [F(a) \otimes (F(a) \oplus F(b))] and F(a) \in [F(a) \oplus (F(a) \otimes F(b))]. Finally F(a) \in [F(a) \otimes (F(a) \oplus F(b))] \cap [F(a) \oplus (F(a) \otimes F(b))]. Let F(a) \subseteq F(a) \oplus F(b) \oplus F(b). By definition, F(a) \oplus F(b) = \{x \in L/ a \oplus b \leq x\}. As x \in F(b) means b \leq x and b \oplus (a \otimes b) \leq x. So b \leq x or (a \otimes b) \leq x. So a \leq x and b \leq x. This implies x \in F(a) \otimes F(b). Therefore F(a) \subseteq F(a) \otimes F(b). Similarly we can prove F(a) \otimes F(b) \subseteq F(a). Therefore (F(L), \otimes, \oplus) is hyper lattice.

References

[7] Zhao Bin, Xiao Ying, Han Sheng wei ,” Hypersemilattices”http://paper.edu.in

Received: March 26, 2013