Classical Matrices and Mean-Starshaped Sequences

Chikkanna R. Selvaraj and Suguna Selvaraj

Penn State University - Shenango Campus
147, Shenango Avenue, Sharon, PA 16146, USA
ulf@psu.edu, sxs32@psu.edu

Copyright © 2013 Chikkanna R. Selvaraj and Suguna Selvaraj. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dedicated to Dr. Fred Leeds on his retirement

Abstract

We give the necessary and sufficient conditions for a lower triangular matrix to preserve the mean-starshape of sequences. Further, we show that the Cesaro matrix, Euler matrix and a particular case of Nörlund matrix preserve the mean-starshape of sequences.

Mathematics Subject Classification: 40C05, 40D05, 40G05

Keywords: Starshaped sequences, Mean-Starshaped sequences, Cesaro matrix, Nörlund matrix, Euler matrix

1. Introduction. In [5], Toader introduced the notion of starshaped sequences and mean-starshaped sequences and showed that the sets of convex and mean-convex sequences are subsets of mean-starshaped sequences. Several authors [1, 2, 4, 5] have proved many results on convex sequences and mean-convex sequences. We hardly find any study on mean-starshaped sequences. In [6] and [7], Toader proved a few results on \(u \)-mean starshaped sequences and \(p \)-mean starshaped sequences. In this paper, we prove the results on the transformations of mean-starshaped sequences by a lower triangular matrix \(A \). We also prove several relationships between starshaped...
and mean-starshaped sequences. We begin with the following definitions given in [5].

Definition 1.1. A real sequence \(\{x_n\} \) is called starshaped, if

\[
S(x_n) = \frac{x_n - x_0}{n} - \frac{x_{n-1} - x_0}{n-1} \geq 0 \quad \text{for} \quad n \geq 2.
\] (1.1)

Definition 1.2. A real sequence \(\{x_n\} \) is called mean-starshaped, if its mean-sequence denoted by \(\mathcal{M}(x_n) \) where

\[
\mathcal{M}(x_n) = \frac{x_0 + \cdots + x_n}{n+1}
\]

is starshaped. In other words, \(\{x_n\} \) is mean-starshaped if

\[
S(\mathcal{M}(x_n)) = \frac{\mathcal{M}(x_n) - \mathcal{M}(x_0)}{n} - \frac{\mathcal{M}(x_{n-1}) - \mathcal{M}(x_0)}{n-1} \geq 0, \quad \text{for} \quad n \geq 2.
\] (1.2)

It is easy to see that the operators \(\mathcal{M} \) and \(S \) are linear. So, we state below the lemma without proof.

Lemma 1.3. If \(a \) and \(b \) are arbitrary real numbers and if \(\{x_n\} \) and \(\{y_n\} \) are real sequences, then

(i) \(\mathcal{M}(ax_n + by_n) = a\mathcal{M}(x_n) + b\mathcal{M}(y_n) \).

(ii) \(S(ax_n + by_n) = aS(x_n) + bS(y_n) \).

(iii) If \(a \) and \(b \) are non-negative real numbers and \(S(x_n) \geq 0 \) and \(S(y_n) \geq 0 \), then \(S(ax_n + by_n) \geq 0 \).

Also, we give below a relationship between \(S(x_n) \) and \(S(\mathcal{M}(x_n)) \), which we will use later in the paper.

For any real sequence \(\{x_n\} \), we have from the definitions of \(S \) and \(\mathcal{M} \),

\[
S(\mathcal{M}(x_n)) = \frac{\mathcal{M}(x_n) - \mathcal{M}(x_0)}{n} - \frac{\mathcal{M}(x_{n-1}) - \mathcal{M}(x_0)}{n-1} = \frac{1}{n} \left[\frac{x_0 + x_1 + \cdots + x_n}{n + 1} - x_0 \right] - \frac{1}{n-1} \left[\frac{x_0 + x_1 + \cdots + x_{n-1}}{n} - x_0 \right]
\]

\[
= \frac{-2}{n(n^2 - 1)} \sum_{k=0}^{n-1} x_k + \frac{x_n}{n(n+1)} + \frac{x_0}{n(n-1)}
\]

\[
= \frac{1}{n(n^2 - 1)} \left[(n-1)x_n - 2(x_{n-1} + \cdots + x_1) + (n-1)x_0 \right]
\]

\[
= \frac{1}{n(n^2 - 1)} \sum_{k=2}^{n} [(k-1)x_k - kx_{k-1} + x_0]
\] (1.3)
The result given below involving the inequalities of $S(x_n)$ and $S(M(x_n))$ follows easily from the above relationship between $S(x_n)$ and $S(M(x_n))$. Hence, we omit the proof.

Lemma 1.4. For any real sequence $\{x_n\}$, if $S(x_n) \geq 0$ for each $n \geq 2$, then $S(M(x_n)) \geq 0$.

Lemma 1.5. For any real sequence $\{x_n\}$, $S(x_n) = 0$ if and only if $S(M(x_n)) = 0$ for each $n \geq 2$.

Proof. From (1.4), it is obvious that $S(x_n) = 0$ implies $S(M(x_n)) = 0$. We prove the converse by induction. Since $S(M(x_2)) = 0$, we have from (1.4) that $S(M(x_2)) = \frac{1}{3}S(x_2) = 0$. Now, assuming that $S(x_k) \geq 0$ for $k = 2, 3, \ldots, n$, we will show that $S(x_{n+1}) \geq 0$. Since $S(M(x_{n+1})) = 0$, using (1.4), we can write

$$
\frac{1}{(n+1)(n^2+2n)} \sum_{k=2}^{n+1} k(k-1)S(x_k) = 0.
$$

By our assumption, the above equation simplifies to

$$
\frac{1}{(n+2)}S(x_{n+1}) = 0.
$$

Hence, the lemma.

In the next section, we give a few more definitions and notations. In Section 3, we state and prove the necessary and sufficient conditions for a lower triangular matrix to map a mean-starshaped sequence into a mean-starshaped sequence. Finally, in Section 4, we discuss the classical matrices.

2. Preliminary results. In [5], Toader states the following result.

Lemma 2.1. If the sequence $\{x_n\}$ is represented by

$$
x_0 = c_0; \quad x_1 = -c_0 + 2c_1; \quad x_n = (1-2n)c_0 + 2n \sum_{j=1}^{n-1} \frac{c_j}{j} + (n+1)c_n \text{ for } n \geq 2, \quad (2.1)
$$

then $\{x_n\}$ is mean-starshaped if and only if $c_k \geq 0$ for $k \geq 2$.

Proof. It suffices to show that $S(M(x_n)) \geq 0$ if and only if $c_k \geq 0$ for $k \geq 2$.

From (1.3), we have for $n \geq 2$

$$S(M(x_n)) = \frac{1}{n(n^2 - 1)} \left[(n - 1)x_n - 2(x_{n-1} + \cdots + x_1) + (n - 1)x_0\right].$$

Expressing x_i's in terms of c_i's as in (2.1), we have

$$S(M(x_n)) = \frac{1}{n(n^2 - 1)} \left[(n - 1) \left\{ (1 - 2n)c_0 + 2n \left(c_1 + \frac{c_2}{2} + \cdots + \frac{c_{n-2}}{n-2} + \frac{c_{n-1}}{n-1} \right) + (n + 1)c_n \right\}
- 2 \left\{ (3 - 2n)c_0 + 2(n - 1) \left(c_1 + \frac{c_2}{2} + \cdots + \frac{c_{n-2}}{n-2} \right) + nc_{n-1} \right\}
\vdots
- 2 \left\{ (-3)c_0 + 2 \cdot 2c_1 + 3c_2 \right\}
- 2 \left\{ (-1)c_0 + 2c_1 \right\}
+ (n - 1)c_0 \right].$$

Now, combining the coefficients of c_k's we obtain

$$S(M(x_n)) = \frac{1}{n(n^2 - 1)} \left[c_0 \left\{ (n - 1)(1 - 2n) + 2 \left(1 + 3 + 5 + \cdots + (2n - 3) \right) + (n - 1) \right\}
+ 2 \sum_{k=1}^{n-2} \frac{c_k}{k} \left\{ n(n - 1) - 2 \left((n - 1) + (n - 2) + \cdots + (k + 1) \right) - k(k + 1) \right\}
+ 2 \frac{c_{n-1}}{n-1} \left\{ n(n - 1) - (n - 1)n \right\}
+ c_n(n^2 - 1) \right].$$

A simple calculation shows that the coefficients of $c_0, c_1, \ldots, c_{n-1}$ are zero. Thus,

$$S(M(x_n)) = \frac{1}{n(n^2 - 1)} c_n(n^2 - 1) = \frac{1}{n} c_n, \text{ for } n \geq 2.$$

Hence, the result.

Also, it is easy to see that in the representation (2.1), the corresponding sequence \{c_k\} satisfies

$$c_0 = x_0, \quad c_1 = \frac{1}{2}(x_0 + x_1),$$

and for $k \geq 2$,

$$c_k = \frac{1}{k + 1} x_0 - \frac{2}{k^2 - 1} \sum_{j=1}^{k-1} x_j + \frac{1}{k + 1} x_k. \quad (2.2)$$
Definition 2.2. Let A be a lower-triangular matrix defining a sequence-to-sequence transformation by

$$(Ax)_n = \sum_{k=0}^{n} a_{n,k} x_k.$$

We define the corresponding lower triangular matrices $A^{(1)} = [a_{n,k}^{(1)}]$, $A^{(2)} = [a_{n,k}^{(2)}]$, and $A^{(*)} = [a_{n,k}^{(*)}]$ as follows.

$$a_{n,i}^{(1)} = \sum_{k=i}^{n} a_{n,k}, \quad a_{n,i}^{(2)} = \sum_{k=i}^{n} a_{n,k}, \quad \text{and} \quad (2.3)$$

$$a_{n,i}^{(*)} = (i + 1)a_{n,i} + 2a_{n,i+1} + \left(\frac{2}{i}\right)a_{n,i+1},$$

for $i = 0, 1, \cdots, n$. Thus,

$$a_{n,i}^{(2)} = \sum_{k=i}^{n} \left(\sum_{j=k}^{n} a_{n,j} \right) = \sum_{j=i}^{n} (j - i + 1)a_{n,j}$$

and

$$a_{n,i}^{(*)} = (i + 1)a_{n,i} + \left(\frac{2}{i}\right) \sum_{k=i+1}^{n} k a_{n,k}. \quad (2.4)$$

Also, it is easy to see that

$$a_{n,n}^{(2)} = a_{n,n}^{(1)} = a_{n,n} \quad \text{and} \quad a_{n,n}^{(*)} = (n + 1)a_{n,n}. \quad (2.5)$$

Throughout this paper, the operators \mathcal{M} and S are applied to the column sequences of the above mentioned matrices.

For any fixed i, let

$$\mathcal{M}(a_{n,i}) = \frac{a_{0,i} + a_{1,i} + \cdots + a_{n,i}}{n+1},$$

$$\mathcal{M}(a_{n,i}^{(j)}) = \frac{a_{0,i}^{(j)} + a_{1,i}^{(j)} + \cdots + a_{n,i}^{(j)}}{n+1} \quad \text{for } j = 1, 2,$$

$$\mathcal{M}(a_{n,i}^{(*)}) = \frac{a_{0,i}^{(*)} + a_{1,i}^{(*)} + \cdots + a_{n,i}^{(*)}}{n+1}.$$

Since $A^{(*)} = [a_{n,k}^{(*)}]$ is lower triangular, $a_{n,i}^{(*)} = 0$ if $n < i$. Therefore, for $i \geq 1$

$$S(\mathcal{M}(a_{n,i})_n) = \frac{\mathcal{M}(a_{n,i}) - \mathcal{M}(a_{0,i})}{n} - \frac{\mathcal{M}(a_{n-1,i}) - \mathcal{M}(a_{0,i})}{n-1}.$$
Proof. Lemma 2.3. If

\[\mathcal{M}(a_{n,i}^{(*)}) = \frac{a_{n,i}^{(*)}}{n} \]

Then

\[S(\mathcal{M}(a_{n,i}^{(*)})) = \frac{\mathcal{M}(a_{n,i}^{(*)})}{n} - \frac{\mathcal{M}(a_{n-1,i}^{(*)})}{n-1} \]

where

\[\mathcal{M}(a_{n,i}^{(*)}) = \frac{a_{i,i}^{(*)} + \cdots + a_{n,i}^{(*)}}{n+1}. \]

Also, from (2.5)

\[\mathcal{M}(a_{n,n}^{(*)}) = \frac{a_{n,n}^{(*)}}{n+1} = a_{n,n}. \] (2.6)

Therefore, for \(n \geq 2 \),

\[
S(\mathcal{M}(a_{n,i}^{(*)})) = \frac{1}{n} \left(\frac{a_{i,i}^{(*)} + \cdots + a_{n,i}^{(*)}}{n+1} \right) - \frac{1}{n-1} \left(\frac{a_{i,i}^{(*)} + \cdots + a_{n-1,i}^{(*)}}{n} \right)
\]

\[
= \frac{1}{n(n^2-1)} \left[-2 \left(a_{i,i}^{(*)} + \cdots + a_{n-1,i}^{(*)} \right) \right] + \frac{1}{n(n+1)} a_{n,i}^{(*)}
\]

\[
= \frac{1}{n(n^2-1)} \sum_{m=i}^{n} \left((m-1)a_{m,i}^{(*)} - ma_{m-1,i}^{(*)} \right) \text{ where } a_{i-1,i} = 0 \text{ (2.7)}
\]

By the linearity of the operators \(S \) and \(\mathcal{M} \), the following result is obvious.

Lemma 2.3. If \(a_{n,i}^{(*)} \) is represented by (2.3), then for each fixed \(i \),

(i) \(\mathcal{M}(a_{n,i}^{(*)}) = (i+1)\mathcal{M}(a_{n,i}) + 2\mathcal{M}(a_{n,i+1}) + \left(\frac{2}{n} \right) \mathcal{M}(a_{n,i+1}) \)

(ii) \(S(\mathcal{M}(a_{n,i}^{(*)})) = (i+1)S(\mathcal{M}(a_{n,i})) + 2S(\mathcal{M}(a_{n,i+1})) + \left(\frac{2}{n} \right) S(\mathcal{M}(a_{n,i+1})) \).

Also, we need the following two lemmas to prove the main result.

Lemma 2.4. For each of the \(i \)-th column of the matrix \(A \), if \(S(a_{n,i}) \geq 0 \) for \(n \geq 2 \), then

(i) \(S(a_{n,i}^{(1)}) \geq 0; \ S(a_{n,i}^{(2)}) \geq 0; \ S(a_{n,i}^{(*)}) \geq 0; \)

(ii) \(S(\mathcal{M}(a_{n,i}^{(1)})) \geq 0; \ S(\mathcal{M}(a_{n,i}^{(2)})) \geq 0; \ S(\mathcal{M}(a_{n,i}^{(*)})) \geq 0. \)

Proof. By the linearity of \(S \), we can write

\[
S(a_{n,i}^{(1)}) = S \left(\sum_{k=i}^{n} a_{n,k} \right) = \sum_{k=i}^{n} S(a_{n,k}) \geq 0 \quad \text{and}
\]

\[
S(a_{n,i}^{(2)}) = S \left(\sum_{j=i}^{n} (j-i+1)a_{n,i} \right) = \sum_{j=i}^{n} (j-i+1)S(a_{n,j}) \geq 0.
\]

Similarly, \(S(a_{n,i}^{(*)}) \geq 0. \) This proves part (i) and part (ii) follows from Lemma 1.4.
Lemma 2.5. For each of the \(i \)-th column of the matrix \(A \), if \(S(a_{n,i}) = 0 \) for \(n \geq 2 \), then by the linearity of \(S \) and \(M \)

(i) \(S(a^{(1)}_{n,i}) = 0; \ S(a^{(2)}_{n,i}) = 0; \ S(a^{(e)}_{n,i}) = 0; \)

(ii) \(S(M(a^{(1)}_{n,i})) = 0; \ S(M(a^{(2)}_{n,i})) = 0; \ S(M(a^{(e)}_{n,i})) = 0. \)

It is not hard to see that the conditions (i) and (ii) do not imply that \(S(a_{n,i}) = 0 \) for each \(i \).

3. Main results. We give below the necessary and sufficient conditions for a lower triangular matrix to preserve mean-starshape of the sequences.

Theorem 3.1. A lower triangular matrix \(A \) preserves mean-starshape of sequences if and only if for each \(n = 2, 3, \ldots \)

(i) \(S(M(a^{(1)}_{n,0})) = 0, \)

(ii) \(S(M(a^{(e)}_{n,1})) = 0, \)

(iii) \(S(M(a^{(e)}_{n,k})) \geq 0, \) for \(k \geq 2. \)

Proof. Let \(\{x_n\} \) be a mean-starshaped sequence. Then by the representation (2.1)

\[
x_0 = c_0; \quad x_1 = -c_0 + 2c_1; \quad x_n = (1 - 2n)c_0 + 2n \sum_{j=1}^{n-1} j + (n + 1)c_n, \quad \text{for} \ n \geq 2,
\]

we have \(c_k \geq 0 \) for \(k \geq 2. \) Then the \(n \)-th term of the transformed sequence is

\[
(Ax)_n = \sum_{k=0}^{n} a_{n,k} x_k
\]

\[
= a_{n,0}c_0 + a_{n,1}(2c_1 - c_0) + \sum_{k=2}^{n} a_{n,k} \left((1 - 2k)c_0 + 2k \sum_{j=1}^{k-1} \frac{c_j}{j} + (k + 1)c_k \right)
\]

\[
= c_0 [a_{n,0} - a_{n,1} - 3a_{n,2} - 5a_{n,3} - \cdots - (2n - 1)a_{n,n}]
\]

\[
+ c_1 [2a_{n,1} + 2(2a_{n,2} + 3a_{n,3} + \cdots + (n - 1)a_{n,n-1} + na_{n,n})]
\]

\[
+ c_2 [3a_{n,2} + (3a_{n,3} + 4a_{n,4} + \cdots + (n - 1)a_{n,n-1} + na_{n,n})]
\]

\[
+ c_3 [4a_{n,3} + \frac{2}{3} (4a_{n,4} + 5a_{n,5} + \cdots + (n - 1)a_{n,n-1} + na_{n,n})]
\]

\[
+ \cdots
\]

\[
+ c_i \left[(i + 1)a_{n,i} + \frac{2}{i} ((i + 1)a_{n,i+1} + (i + 2)a_{n,i+2} + \cdots + (n - 1)a_{n,n-1} + na_{n,n}) \right]
\]

\[
+ \cdots
\]
\[+ c_{n-1} \left[na_{n,n-1} + \frac{2}{n-1} (na_{n,n}) \right] + c_n [(n + 1)a_{n,n}] \]
\[= c_0 [(a_{n,0} + a_{n,1} + \cdots + a_{n,n}) - 2(a_{n,1} + 2a_{n,2} + 3a_{n,3} + \cdots + (n - 1)a_{n,n-1} + na_{n,n})] \]
\[+ c_1 [2(a_{n,1} + 2a_{n,2} + 3a_{n,3} + \cdots + (n - 1)a_{n,n-1} + na_{n,n})] + \sum_{k=2}^n (k + 1)c_k a_{n,k} \]
\[+ 2 \sum_{k=2}^{n-1} c_k [(a_{n,k+1} + a_{n,k+2} + \cdots + a_{n,n}) + \frac{1}{k} (a_{n,k+1} + 2a_{n,k+2} + \cdots + (n - k)a_{n,n})]. \]

Now, using (2.3) and observing that \(a_{n,1} = 2 \sum_{k=1}^n ka_{n,k} \) and \(a_{n,k} = 0 \) for \(k > n \), we can write
\[(Ax)_n = c_0 a_{n,0}^{(1)} + (c_1 - c_0) a_{n,1}^{(*)} + \sum_{k=2}^n c_k \left[(k + 1)a_{n,k} + 2a_{n,k+1} + \left(\frac{2}{k} \right) a_{n,k+1}^{(2)} \right] \]
\[= c_0 a_{n,0}^{(1)} + (c_1 - c_0) a_{n,1}^{(*)} + \sum_{k=2}^n c_k a_{n,k}^{(*)}. \]

By the linearity of the operators \(\mathcal{M} \) and \(S \), we have
\[S(\mathcal{M}((Ax)_n)) \]
\[= c_0 S(\mathcal{M}(a_{n,0}^{(1)})) + (c_1 - c_0) S(\mathcal{M}(a_{n,1}^{(*)})) + \sum_{k=2}^n c_k S(\mathcal{M}(a_{n,k}^{(*)})) \] \(\geq 0, \) \(\text{ (3.1)} \)

by conditions (i), (ii) and (iii). Thus, the sequence \(\{(Ax)_n\} \) is mean-starshaped.

Conversely, assume that the matrix \(A \) preserves mean-starshape of sequences. Suppose that condition (ii) does not hold. Therefore, in the first column of the matrix \(A^{(*)} \), there exists an \(N \geq 2 \) such that \(S(\mathcal{M}(a_{N,1}^{(*)})) = \alpha \neq 0 \). Choose a sequence \(\{x_n\} \) such that \(x_n = -2n \alpha \). Therefore, from (2.2), we get that
\[c_0 = x_0 = 0, \quad c_1 = \frac{1}{2} (x_1 + x_0) = -\alpha \]

and for \(k \geq 2, \)
\[c_k = \frac{1}{k+1} x_0 - \frac{2}{k^2 - 1} \sum_{j=1}^{k-1} x_j + \frac{1}{k+1} x_k \]
\[S(\mathcal{M}(Ax)_N) = c_1 S(\mathcal{M}(a_{N,1}^*)) + \sum_{k=2}^{N} c_k S(\mathcal{M}(a_{N,k}^*)) \]
\[= (\alpha)(\beta) = -\beta^2, \]

which contradicts that the transformed sequence \((Ax)_n\) is mean-starshaped. Hence, condition (ii) must be true.

Next, suppose that condition (i) does not hold. That is, there exists an \(N \geq 2\), such that
\[S(\mathcal{M}(a_{N,0}^*)) = \beta \neq 0. \]
Choose a mean-starshaped sequence \(\{x_n\}\) such that \(x_n = (2n-1)\beta\). Therefore, from
\[(2.2) \quad c_0 = x_0 = -\beta, \quad c_1 = \frac{1}{2}(x_0 + x_1) = 0, \]
and for \(k \geq 2\)
\[c_k = \frac{1}{k+1}x_0 - \frac{2}{k^2-1} \sum_{j=1}^{k-1} x_j + \frac{1}{k+1}x_k \]
\[= -\frac{\beta}{k+1} - \frac{2}{k^2-1} \sum_{j=1}^{k-1} (2j-1)\beta + \frac{1}{k+1}(2k-1)\beta \]
\[= \frac{\beta}{k+1}(2k-2) - \frac{2\beta}{k^2-1}(1 + 3 + \ldots + (2k-3)) \]
\[= 0. \]

Thus, from (3.1) and noting that \(S(\mathcal{M}(a_{n,1}^*)) = 0\) for each \(n \geq 2\),
\[S(\mathcal{M}(Ax)_N) = c_0 S(\mathcal{M}(a_{N,0}^*)) \]
\[= (\beta)(\beta) = -\beta^2, \]

which contradicts that the transformed sequence \((Ax)_n\) is mean-starshaped. Therefore, condition (i) must be true.

We will now show that condition (iii) is necessary for the matrix \(A\) to preserve the mean-starshape of the sequences. Since we have established conditions (i) and (ii), the equation (3.1) simplifies to
\[S(\mathcal{M}((Ax)_n)) = \sum_{k=2}^{n} c_k S(\mathcal{M}(a_{n,k}^*)) \quad (3.2) \]
We need to prove that for each fixed $k \geq 2$,

$$S(\mathcal{M}(a_{n,k}^{(e)})) \geq 0 \text{ for } n \geq k.$$

Suppose the above condition is not true. Therefore, for some $k \geq 2$, the k-th column of the matrix $A^{(e)}$ is not mean-starshaped. Then, for that k, there exists an $N \geq k$ such that

$$S(\mathcal{M}(a_{N,k}^{(e)})) = \lambda < 0.$$

Now, we construct a sequence $\{x_n\}$ as follows.

$$x_n = \begin{cases} 0, & \text{if } n < N, \\ -(N+1)\lambda, & \text{if } n = N, \\ -2\lambda \frac{n}{N}, & \text{if } n > N. \end{cases}$$

Since the sequence $\{x_n\}$ can be represented in the form of (2.1) the corresponding values of $c_j's$ can be calculated using (2.2). By routine algebraic calculation, we find that

$$c_0 = c_1 = \cdots = c_{N-1} = 0,$$

$$c_N = -\lambda,$$

$$c_{N+1} = c_{N+2} = \cdots = 0.$$

Therefore, the sequence $\{x_n\}$ is mean-starshaped. Thus, (3.2) reduces to

$$S(\mathcal{M}(Ax)_n) = c_N S(\mathcal{M}(a_{N,k}^{(e)})) = (-\lambda)(\lambda) = -\lambda^2 < 0,$$

which is a contradiction. Hence, the theorem.

Next, we observe that the three sufficient conditions in Theorem 3.1 for a matrix to preserve mean-starshape of the sequences can be replaced by weaker conditions. This will make it easier to check, if any matrix A preserves mean-starshape of the sequences.

Theorem 3.2. A lower triangular matrix A preserves mean-starshape of sequences, if for each $n = 2, 3, \cdots$,

(i) $S(a_{n,0}^{(1)}) = 0$

(ii) $S(a_{n,1}^{(e)}) = 0$

(iii) $S(a_{n,k}^{(e)}) \geq 0$ for $k \geq 2$.

Proof. Using Lemma 2.5, we see that conditions (i) and (ii) are equivalent to

\[S(\mathcal{M}(a_{n,0}^{(1)})) = 0 \quad \text{and} \quad S(\mathcal{M}(a_{n,1}^{(*)})) = 0. \]

Now, if \(\{x_n\} \) is a mean-starshaped sequence, then the corresponding \(c_k \)'s are non-negative for \(k \geq 2 \). Using Lemma 1.4 in equation (3.1), we have that

\[S(\mathcal{M}(Ax)_n) = \sum_{k=2}^{n} c_k S(\mathcal{M}(a_{n,k}^{(*)})) \geq 0. \]

4. Examples. The lower triangular matrix of ones defined by \(A = [a_{n,k}] \) where

\[a_{n,k} = \begin{cases} 1, & \text{if } k \leq n, \\ 0, & \text{if } k > n \end{cases} \]

does not preserve the mean-starshape of sequences.

From the Definition 2.2, we have

\[a_{n,1}^{(*)} = 2 \sum_{k=1}^{n} k a_{n,k} \]
\[= 2(1 + 2 + 3 + \cdots + n) \]
\[= n(n + 1). \]

Now, for \(n \geq 2 \),

\[S(\mathcal{M}(a_{n,1}^{(*)})) = \frac{\mathcal{M}(a_{n,1}^{(*)}) - \mathcal{M}(a_{n-1,1}^{(*)})}{n - 1} \]
\[= \frac{1}{n} \left[a_{1,1}^{(*)} + \cdots + a_{n,1}^{(*)} \right] - \frac{1}{n-1} \left[a_{1,1}^{(*)} + \cdots + a_{n-1,1}^{(*)} \right] \]
\[= \frac{1}{n(n+1)} [1 \cdot 2 + 2 \cdot 3 + \cdots + n(n+1)] \]
\[- \frac{1}{n(n-1)} [1 \cdot 2 + 2 \cdot 3 + \cdots + (n-1)n] \]
\[= \frac{n+2}{3} - \frac{n+1}{3} \neq 0. \]

Thus, condition (ii) of Theorem 3.1 fails, implying that \(A \) does not preserve the mean-starshape of sequences.

Next, we consider one of the classical matrices. Cesaro matrix \(C = [C_{n,k}] \) is given by [3, page 44]

\[C_{n,k} = \begin{cases} \frac{1}{n+1}, & \text{for } k \leq n, \\ 0, & \text{for } k > n. \end{cases} \]
It is easy to see that the corresponding matrices $C^{(1)}$ and $C^{(2)}$ are given by

\[
C^{(1)}_{n,k} = \begin{cases}
\frac{n-k+1}{n+1}, & \text{if } k \leq n, \\
0, & \text{if } k > n,
\end{cases}
\]

\[
C^{(2)}_{n,k} = \begin{cases}
\frac{(n-k+1)(n-k+2)}{2(n+1)}, & \text{if } k \leq n, \\
0, & \text{if } k > n.
\end{cases}
\]

We will show that the three conditions of Theorem 3.2 are true in the case of Cesaro matrix. First, for $n \geq 2$,

\[
S(C^{(1)}_{n,0}) = S(1) = 0.
\]

Thus, condition (i) of Theorem 3.2 is satisfied. Next, we see that

\[
C^{(\star)}_{n,1} = 2 \sum_{k=1}^{n} k C_{n,k} = n.
\]

So, for $n \geq 2$,

\[
S(C^{(\star)}_{n,1}) = S(n) = 0.
\]

Now, to check condition (iii) of Theorem 3.2, we observe from (2.3) that

\[
C^{(\star)}_{n,k} = (k+1)C_{n,k} + 2C^{(1)}_{n,k+1} + \frac{2}{k}C^{(2)}_{n,k+1}
\]

\[
= \frac{k+1}{n+1} + 2\frac{(n-k)}{n+1} + \frac{(n-k)((n-k+1))}{k(n+1)}
\]

\[
= \frac{1}{k(n+1)} \left[k(k+1) + 2k(n-k) + (n-k)(n-k+1) \right]
\]

\[
= \frac{n}{k}.
\]

For a fixed $k \geq 2$,

\[
S(C^{\star}_{n,k}) = \frac{n}{nk} - \frac{n-1}{(n-1)k} = 0.
\]

So, by Theorem 3.2 the Cesaro matrix preserves mean-starshape of sequences.

Another well-known lower triangular matrix is Nörlund matrix $N_p[n,k]$ which is given by [3, page 43]

\[
N_{n,k} = \begin{cases}
p_{n-k}, & \text{if } k \leq n, \\
0, & \text{if } k > n
\end{cases}
\]

for $p_0 > 0$ and $P_n = \sum_{k=0}^{n} p_k$. It is easy to see that

\[
p_k + 2p_{k-1} + 3p_{k-2} + \cdots + (k+1)p_0 = P_k + P_{k-1} + \cdots + P_0.
\]
Further more, we see that

\[N_{n,k}^{(1)} = \begin{cases}
\frac{P_n - k}{P_n}, & \text{if } k \leq n, \\
0, & \text{if } k > n
\end{cases} \]

and

\[N_{n,k}^{(2)} = \begin{cases}
\frac{1}{P_n} (p_n - k + 2p_{n-k-1} + \cdots + (n-k+1)p_0), & \text{if } k \leq n, \\
0, & \text{if } k > n.
\end{cases} \]

In order to determine if Nörlund matrix preserves mean-starshape of sequences, first we consider condition (i) of Theorem 3.1 which is equivalent to \(S(N_{n,0}^{(1)}) = 0 \) for \(n \geq 2 \) by Lemma 1.5. Since \(N_{n,0}^{(1)} = 1 \) for all \(n \), \(S(N_{n,0}^{(1)}) = 0 \). Thus, the condition (i) of Theorem 3.1 holds for any Nörlund matrix. Next, we consider condition (ii) of Theorem 3.1, which is equivalent to \(S(N_{n,1}^{(s)}) = 0 \) for \(n \geq 2 \).

For each \(n \geq 2 \), we need the following lemmas.

Lemma 4.1. If the Nörlund matrix satisfies condition (ii) of Theorem 3.1, then we get the following equivalent statements. For \(n \geq 2 \),

(i) \(\frac{P_{n-1} + \cdots + P_0}{nP_n} = \frac{P_{n-2} + \cdots + P_0}{(n-1)P_{n-1}} \)

(ii) \(\frac{P_{n-1} + \cdots + P_0}{nP_n} = \frac{P_0}{P_1} \)

(iii) \(\frac{P_0}{P_1} = \frac{2P_0}{P_2} = \frac{3P_0}{P_3} = \cdots = \frac{nP_0}{P_n} \)

(iv) \(p_n = \frac{1}{n!} \alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n-1)p_0 \) and \(P_n = \frac{1}{n!} \alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)p_0 \)

where \(\alpha = \frac{P_1}{P_0} \).

The proof is obvious.
Lemma 4.2. If the Nörlund matrix satisfies condition (ii) of Theorem 3.1, then for each \(k \geq 2 \) and \(n \geq k \),

\[
N_{n,k}^{(*)} = \frac{(n-k+1)(n-k+2)\cdots n}{(\alpha+n-k)(\alpha+n-k+1)\cdots(\alpha+n)} \left[(k+1) \left(\alpha + \frac{2(n-k)}{k} \right) + \frac{2(n-k)(n-k-1)}{k(\alpha+1)} \right].
\]

Proof. Using (2.4) we can write

\[
N_{n,k}^{(*)} = (k+1)N_{n,k} + \frac{2}{k} \sum_{j=k+1}^{n} jN_{n,j}.
\]

Using (4.1), the above equation can be written as

\[
N_{n,k}^{(*)} = (k+1)\frac{p_{n-k}}{P_n} + \frac{2}{k} \sum_{j=k+1}^{n} j\frac{p_{n-j}}{P_n}
\]

\[
= \frac{1}{P_n} \left[(k+1)p_{n-k} + \frac{2(k+1)}{k} \sum_{j=k+1}^{n} p_{n-j} + \frac{2}{k} \left(p_{n-k-2} + 2p_{n-k-3} + \cdots + (n-k-1)p_0 \right) \right].
\]

Using (4.2) in the last sum, we get

\[
N_{n,k}^{(*)} = \frac{1}{P_n} \left[(k+1)p_{n-k} + \frac{2}{k} (k+1)p_{n-k-1} + \frac{2}{k} (P_{n-k-2} + \cdots + P_0) \right].
\]

Using (ii) of Lemma 4.1, we get

\[
N_{n,k}^{(*)} = \frac{1}{P_n} \left[(k+1)p_{n-k} + \frac{2}{k} (k+1)P_{n-k-1} + \frac{2}{k} \left(P_{n-k-2} + \cdots + P_0 \right) \right].
\]

Using (iv) of Lemma 4.1 and simplifying we get the required expression for \(N_{n,k}^{(*)} \).

Lemma 4.3. If the Nörlund matrix satisfies condition (ii) of Theorem 3.1, then for each \(k \geq 2 \) and \(n \geq k \),

\[
nN_{n+1,k}^{(*)} - (n+1)N_{n,k}^{(*)} = \frac{(n+1)!((k+1)(k-1)\alpha(\alpha-1)}{(n-k+1)!((\alpha+n-k)\cdots(\alpha+n+1))}.
\]

Proof. In Lemma 4.2, replacing \(n \) by \(n+1 \) in the expression for \(N_{n,k}^{(*)} \) we obtain the expression for \(N_{n+1,k}^{(*)} \). Now, we can compute the difference

\[
nN_{n+1,k}^{(*)} - (n+1)N_{n,k}^{(*)}
= \frac{(n+1)n\cdots(n-k+2)}{(\alpha+n-k)\cdots(\alpha+n+1)}
\]
\[
\times \left[n(\alpha + n - k) \left((k + 1)\alpha + \frac{2(k + 1)(n - k + 1)}{k} + \frac{2(n - k + 1)(n - k)}{k(\alpha + 1)} \right) \\
-(n - k + 1)(\alpha + n + 1) \left((k + 1)\alpha + \frac{2(k + 1)(n - k)}{k} + \frac{2(n - k)(n - k - 1)}{k(\alpha + 1)} \right) \right]
\]

\[
= \frac{(n + 1)n \cdots (n - k + 2)}{(\alpha + n - k) \cdots (\alpha + n + 1)} (k + 1) \left[\alpha^2(k - 1) - \alpha(k - 1) \right].
\]

Multiplying both the numerator and the denominator of the above expression by \((n - k + 1)!\) we obtain

\[
nN_{n+1,k}^{(\ast)} - (n + 1)N_{n,k}^{(\ast)} = \frac{(n + 1)!(k + 1)(k - 1)\alpha(\alpha - 1)}{(n - k + 1)!(\alpha + n - k) \cdots (\alpha + n + 1)}.
\]

Lemma 4.4. If the Nörlund matrix satisfies condition (ii) of Theorem 3.1, then for each \(k \geq 2\) and \(n \geq k\),

\[
S(\mathcal{M}(N_{n,k}^{(\ast)})_n) = \frac{(n - 2)!(k - 1)\alpha}{(n - k)!(\alpha + n - k)(\alpha + n - k + 1) \cdots (\alpha + n)},
\]

(4.4)

where \(\alpha = \frac{p_1}{p_0}\).

Proof. We prove the lemma by induction. First, we notice that in the \(k\)-th column of the matrix \([N_{n,k}^{(\ast)}]\), the entries are zero if \(n < k\). For \(n = k\), from (2.6) and (4.1), we see that

\[
\mathcal{M}(N_{n,k}^{(\ast)}) = N_{k,k} = \frac{p_0}{P_k}.
\]

Now, substituting \(n = k\), the left side of (4.4) becomes

\[
S(\mathcal{M}(N_{k,k}^{(\ast)})) = S(N_{k,k}) = \frac{p_0}{kP_k}
\]

and the right side of (4.4) reduces to

\[
\frac{(k - 1)!}{(\alpha + 1) \cdots (\alpha + k)} = \frac{p_0}{kP_k}
\]
from (iv) of Lemma 4.1.

Next, for a fixed \(k \), replacing \(n \) by \(k + 1 \) in (2.7), we obtain

\[
S(\mathcal{M}(N_{k+1,k}^{(s)})) = \frac{1}{k(k+1)(k+2)} \sum_{m=k}^{k+1} \left[(m-1)N_{m,k}^{(s)} - mN_{m-1,k}^{(s)} \right]
\]

\[
= \frac{1}{k(k+1)(k+2)} \left[(k-1)N_{k+1,k}^{(s)} - kN_{k+1,k}^{(s)} + kN_{k-1,k}^{(s)} - (k+1)N_{k,k}^{(s)} \right].
\]

Combining similar terms and noting that \(N_{k-1,k}^{(s)} = 0 \), we have

\[
S(\mathcal{M}(N_{k+1,k}^{(s)})) = \frac{1}{k(k+1)(k+2)} \left[-2N_{k,k}^{(s)} + kN_{k+1,k}^{(s)} \right].
\]

From (2.4) and from the definition (4.1) of Norlund matrix, we obtain

\[
S(\mathcal{M}(N_{k+1,k}^{(s)})) = \frac{1}{k(k+1)(k+2)} \left[-2(k+1)N_{k,k}^{(s)} + \frac{k(k+1)p_0}{P_k} + \frac{k(k+1)p_1}{P_{k+1}} + \frac{2(k+1)p_0}{P_{k+1}} \right].
\]

Using (iv) of Lemma 4.1, the above equation simplifies to

\[
S(\mathcal{M}(N_{k+1,k}^{(s)})) = \frac{(k-1)!(k-1)\alpha}{(\alpha+1)\cdots(\alpha+k+1)}.
\]

Thus, we have shown that (4.4) is true for \(n = k \) and \(n = k + 1 \). Now, assume that (4.4) is valid for a natural \(n \geq k + 1 \). It is sufficient to show that

\[
S(\mathcal{M}(N_{n+1,k}^{(s)})) = \frac{(n-1)!(k-1)\alpha}{(n-k+1)!(\alpha+n-k+1)\cdots(\alpha+n+1)}.
\]

From our assumption and noting that \(N_{0,k}^{(s)} = 0 \) we have from (2.7) that

\[
\sum_{m=k}^{n} \left[(m-1)N_{m,k}^{(s)} - mN_{m-1,k}^{(s)} \right] = \frac{(n+1)!(k-1)\alpha}{(n-k)!(\alpha+n-k)\cdots(\alpha+n)}.
\]

(4.5)

First, we write using (2.7)

\[
S(\mathcal{M}(N_{n+1,k}^{(s)})) = \frac{1}{n(n+1)(n+2)} \sum_{m=k}^{n+1} \left[(m-1)N_{m,k}^{(s)} - mN_{m-1,k}^{(s)} \right]
\]

\[
= \frac{1}{n(n+1)(n+2)} \left[\sum_{m=k}^{n} \left((m-1)N_{m,k}^{(s)} - mN_{m-1,k}^{(s)} \right) + \left(nN_{n+1,k}^{(s)} - (n+1)N_{n,k}^{(s)} \right) \right].
\]
Then, using (4.5) in the first term and using Lemma 4.3 in the last term on the right side of the above equation, we get

\[
S(\mathcal{M}(N_{n+1,k}^{(\star)})) = \frac{1}{n(n+1)(n+2)} \left[\frac{(n+1)!(k-1)\alpha}{(n-k)!(\alpha+n-k) \cdots (\alpha+n)} \right. \\
+ \left. \frac{(n+1)!(k+1)(k-1)\alpha(\alpha-1)}{(n-k+1)!(\alpha+n-k) \cdots (\alpha+n+1)} \right].
\]

Simplifying the right side, we obtain

\[
S(\mathcal{M}(N_{n+1,k}^{(\star)})) = \frac{(n-1)!(k-1)\alpha}{(n-k+1)!(\alpha+n-k+1) \cdots (\alpha+n+1)}.
\]

Hence, the lemma.

Thus, \(S(\mathcal{M}(N_{n,k}^{(\star)})) \geq 0 \) for each \(k \geq 2 \) and \(n \geq k \) which yields condition (iii) of Theorem 3.1. Thus, we get the following theorem.

Theorem 4.5. The Nörlund matrix \(N_{p,n,k} \) preserves the mean-starshape of sequences if and only if the sequence \(\{p_n\} \) satisfies the condition that

\[
p_n = \frac{1}{n!} \alpha(\alpha+1) \cdots (\alpha+n-1) p_0
\]

for some \(\alpha > 0 \).

Next, we discuss another familiar matrix, Euler matrix, which is given by [3, page 54]

\[
E_r[n,k] = E_{n,k} = \begin{cases}
\binom{n}{k} r^k (1-r)^{n-k}, & \text{if } k \leq n, \\
0, & \text{if } k > n
\end{cases} \tag{4.6}
\]

where \(0 < r < 1 \). The corresponding matrices \(E^{(1)}_{n,k} \), \(E^{(2)}_{n,k} \) and \(E^{(\star)}_{n,k} \) are given by

\[
E^{(1)}_{n,k} = \begin{cases}
\sum_{j=k}^{n} \binom{n}{j} r^j (1-r)^{n-j}, & \text{if } k \leq n, \\
0, & \text{if } k > n
\end{cases}
\]

\[
E^{(2)}_{n,k} = \begin{cases}
\sum_{j=k}^{n} (j-k+1) \binom{n}{j} r^j (1-r)^{n-j}, & \text{if } k \leq n, \\
0, & \text{if } k > n
\end{cases}
\]

and

\[
E^{(\star)}_{n,k} = (k+1)E_{n,k} + \frac{2}{k} \sum_{j=k+1}^{n} jE_{n,j}. \tag{4.7}
\]
We will prove that all three conditions of Theorem 3.1 are true in the case of Euler matrix. Since,

\[E_{n,0}^{(1)} = (r + 1 - r)^n = 1, \]

we have \(S(E_{n,0}^{(1)}) = 0 \), which is equivalent to \(S(M(E_{n,0}^{(1)})) = 0 \).

Since \(E_{n,1}^{(*)} = 2(E_{n,1} + 2E_{n,2} + 3E_{n,3} + \cdots + nE_{n,n}) \), we have

\[
S(E_{n,1}^{(*)}) = \frac{1}{n} E_{n,1}^{(*)} - \frac{1}{n-1} E_{n-1,1}^{(*)} \]

\[
= \frac{2}{n} \left(\sum_{k=1}^{n} kE_{n,k} \right) - \frac{2}{n-1} \left(\sum_{k=1}^{n-1} kE_{n-1,k} \right) \]

\[
= \frac{2(1-r)^n}{n} \sum_{k=1}^{n} k \left(\frac{n}{k} \right) \left(\frac{r}{1-r} \right)^k - \frac{2(1-r)^{n-1}}{n-1} \sum_{k=1}^{n-1} k \left(\frac{n-1}{k} \right) \left(\frac{r}{1-r} \right)^k \]

Letting \(x = \frac{r}{1-r} \) and using the operator \(x \frac{d}{dx} \), we can write that

\[
S(E_{n,1}^{(*)}) = \frac{2(1-r)^n}{n} \left(x \frac{d}{dx} \right) \left(\sum_{k=1}^{n} \left(\frac{n}{k} \right) x^k \right) - \frac{2(1-r)^{n-1}}{n-1} \left(x \frac{d}{dx} \right) \left(\sum_{k=1}^{n-1} \left(\frac{n-1}{k} \right) x^k \right) \]

\[
= \frac{2(1-r)^n}{n} \left(x \frac{d}{dx} \right) [(1 + x)^n - 1] - \frac{2(1-r)^{n-1}}{n-1} \left(x \frac{d}{dx} \right) [(1 + x)^{n-1} - 1] \]

\[
= \frac{2(1-r)^n}{n} x[n(1 + x)^{n-1}] - \frac{2(1-r)^{n-1}}{n-1} x[(n-1)(1 + x)^{n-2}] \]

\[
= 2r - 2r = 0, \]

which is equivalent to \(S(M(E_{n,1}^{(*)})) = 0 \). Thus, conditions (i) and (ii) of Theorem 3.1 hold for Euler matrix.

Next, in order to prove that \(S(M(E_{n,k}^{(*)})) > 0 \), we need the following lemmas.

Lemma 4.5. The matrix \(E^{(*)} \) satisfies the following equation. For each \(k \geq 2 \) and \(n \geq k \)

\[
nE_{n+1,k}^{(*)} - (n+1)E_{n,k}^{(*)} = \binom{n+1}{k} r^k (1-r)^{n-k} (k-1)[k+1-(n+2)r]. \]

Proof. Using (4.7) and (4.6), we see, after some algebraic manipulation that

\[
nE_{n+1,k}^{(*)} - (n+1)E_{n,k}^{(*)} \]

\[
= r^k (1-r)^{n-k} \left[(k^2 - 1) \binom{n+1}{k} (1-r) - (k+1) \binom{n+1}{k} (n-k+1) r \right] \]

\[
+ 2r(k+1) \binom{n+1}{k+1} \]

\[
+ \frac{2}{k} \sum_{j=1}^{n-k} \frac{r^{j+1}}{(1-r)^2} (j+k) \left\{ \binom{n+1}{j+k+1} (j+k) - \binom{n+1}{j+k} (n+1-j-k) \right\} \].

Since the quantity inside the braces is zero and noting that \(\binom{n+1}{k+1}(k+1) = \binom{n+1}{k}(n+1-k) \), the above equation simplifies to

\[
ne_{n+1,k} - (n+1)e_{n,k} = r^k(1-r)^{n-k} \left[(k^2 - 1) \binom{n+1}{k} (1-r) - r \binom{n+1}{k} (n+1-k)(k-1) \right]
\]

\[
= r^k(1-r)^{n-k} \binom{n+1}{k} (k-1) [k + 1 - (n+2)r].
\]

Hence, the lemma.

Lemma 4.6. In the matrix \([E_{n,k}^{(*)}]\), for each \(k \geq 2 \) and \(n \geq k \), we have

\[
S(\mathcal{M}(E_{n,k}^{(*)})) = \frac{r^k(1-r)^{n-k}(k-1)(n-2)!}{k!(n-k)!}. \tag{4.8}
\]

Proof. We prove the lemma by induction. First, we notice that in the \(k \)-th column of the matrix \([E_{n,k}^{(*)}]\), the entries are zero if \(n < k \).

For \(n = k \), from (2.6) and (4.6), we see that

\[
\mathcal{M}(E_{k,k}^{(*)}) = E_{k,k} = r^k.
\]

Now, substituting \(n = k \), the left side of (4.8) becomes

\[
S(\mathcal{M}(E_{k,k}^{(*)})) = S(r^k) = \frac{r^k}{k!}
\]

and the right side of (4.8) reduces to

\[
\frac{r^k(k-1)(k-2)!}{k!} = \frac{r^k}{k!}.
\]

Next, for a fixed \(k \), replacing \(n \) by \(k+1 \) in (2.7), we obtain

\[
S(\mathcal{M}(E_{k+1,k}^{(*)})) = \frac{1}{k(k+1)(k+2)} \sum_{m=k}^{k+1} \left[(m-1)E_{m,k}^{(*)} - mE_{m-1,k}^{(*)} \right]
\]

\[
= \frac{1}{k(k+1)(k+2)} \left[-2E_{k,k}^{(*)} + kE_{k+1,k}^{(*)} \right].
\]

From (2.4), we obtain

\[
S(\mathcal{M}(E_{k+1,k}^{(*)})) = \frac{r^k(1-r)(k-1)}{k!} = r^k(1-r)(k-1) \frac{(k-1)!}{k!}.
\]
Thus, we have shown that (4.8) is true for \(n = k \) and \(n = k + 1 \). Now, assume that (4.8) is valid for a natural \(n \geq k + 1 \). It is sufficient to show that

\[
S(M(E_{n+1,k}^{(s)}))_n = \frac{r^k(1-r)^{n-k+1}(k-1)(n-1)!}{k!(n-k+1)!}.
\]

From our assumption, we have from (2.7) that

\[
\sum_{m=k}^{n} [(m-1)E_{m,k}^{(s)} - mE_{m-1,k}^{(s)}] = \frac{r^k(1-r)^{n-k}(k-1)(n-2)!n(n^2-1)}{k!(n-k)!}.
\]

(4.9)

First, we write using (2.7)

\[
S(M(E_{n+1,k}^{(s)}))_n = \frac{1}{n(n+1)(n+2)} \left[\sum_{m=k}^{n} [(m-1)E_{m,k}^{(s)} - mE_{m-1,k}^{(s)}] + nE_{n+1,k}^{(s)} - (n+1)E_{n,k}^{(s)} \right].
\]

Then, we use Lemma 4.5 and the equation (4.9) to obtain that

\[
S(M(E_{n+1,k}^{(s)}))_n = \frac{1}{n(n+1)(n+2)} \left[\frac{r^k(1-r)^{n-k}(k-1)(n-2)!n(n^2-1)}{k!(n-k)!}
\right. \\
+ \left. \left(\frac{n+1}{k} \right) r^k(1-r)^{n-k}(k-1)(k+1-(n+2)r) \right] \\
= \frac{r^k(1-r)^{n-k+1}(k-1)(n-1)!}{k!(n-k+1)!}.
\]

Hence, the result. Thus, the Euler matrix preserves the mean-starshape of a sequence.

REFERENCES

Received: December 20, 2012