Some New Modular Identities of Ramanujan Continued Fraction

B. N. Dharmendra*, M. R. Rajesh Kanna* and H. L. Parashivamurthy**

*Post Graduate Department of Mathematics
Maharani’s Science College for Women
J. L. B. Road, Mysore-570 001, India
bndharma@gmail.com, mr.rajeshkanna@gmail.com

**Department of Mathematics, BGS Institute Of Technology
B. G. Nagar, Bellur, Nagamangala Thalque
Mandya District-571448, India
hlpmathsbg@gmail.com

Copyright © 2013 B. N. Dharmendra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we establish some new modular identities of Ramanujan continued fraction.

Mathematics Subject Classification: Primary 33D10, 40A15, 11A55, 30B70

Keywords: Continued fraction, Theta functions

1 Introduction

In Chapter 16 of his second notebook [2], Ramanujan develops the theory of theta-function and is defined by

\[f(a, b) := \sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}, |ab| < 1, \]

\[= (-a; ab)_{\infty}(-b; ab)_{\infty}(ab; ab)_{\infty} \]
where \((a; q)_0 = 1\) and \((a; q)_\infty = (1 - a)(1 - aq)(1 - aq^2) \cdots \).

Following Ramanujan, we defined

\[
\varphi(q) := f(q, q) = \sum_{n=-\infty}^{\infty} q^{n^2} = \frac{(-q; q)_\infty}{(q; q)_\infty}, \tag{1.2}
\]

\[
\psi(q) := f(q, q^3) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{(q^2; q^2)_\infty}{(q; q^2)_\infty}, \tag{1.3}
\]

\[
f(-q) := f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2} = (q; q)_\infty \tag{1.4}
\]

and

\[
\chi(q) := (-q; q^2)_\infty. \tag{1.5}
\]

Ramanujan recorded many \(q\)-continued fractions and some of their explicit values in his second notebook [8] and in his lost notebook [9]. The following beautiful continued fraction identity was recorded by Ramanujan in his second notebook and can be found in [1, p. 11, Entry 11]:

\[
\frac{(-a)_\infty(b)_\infty - (a)_\infty(-b)_\infty}{(-a)_\infty(b)_\infty + (a)_\infty(-b)_\infty} = \frac{a - b}{1 - q} + \frac{(a - bq)(aq - b)}{1 - q^3} + \frac{q(a - bq^2)(aq^2 - b)}{1 - q^5} + \cdots \tag{1.6}
\]

where either \(q\), \(a\), and \(b\) are complex numbers with mod \(q < 1\), or \(q\), \(a\), and \(b\) are complex numbers with \(a = bq^m\) for some integer \(m\). Several elegant \(q\)-continued fractions can be expressed in terms of Ramanujan’s theta-functions. The most famous of them is the celebrated Rogers-Ramanujan continued fraction \(R(q)\) is defined as

\[
R(q) := \frac{q^{1/5}f(-q, -q^4)}{f(-q^2, -q^3)} = q^{1/5} + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \cdots}}}, \quad |q| < 1, \tag{1.7}
\]

On page 365 of his Lost Notebook [9], Ramanujan recorded five identities showing the relationships between \(R(q)\) and five continued fractions \(R(-q), R(q^2), R(q^3), R(q^4)\), and \(R(q^5)\). He also recorded these identities at the scattered places of his Notebooks [8]. L. J. Rogers [10] established the modular equations relating \(R(q)\) and \(R(q^n)\) for \(n=2, 3, 5, \) and \(11\). The last of these equations cannot be found in Ramanujan’s works.

The Ramanujan’s cubic continued fraction \(G(q)\) is defined as

\[
G(q) := \frac{q^{1/3}f(-q, -q^5)}{f(-q^3, -q^4)} = q^{1/3} + \frac{q + q^2}{1 + \frac{q^2 + q^4}{1 + \cdots}}, \quad |q| < 1, \tag{1.8}
\]

The continued fraction (1.8) was first introduced by Ramanujan in his second letter to G. H. Hardy [6]. He also recorded the continued fraction
Some new modular identities of Ramanujan continued fraction

(1.8) on page 365 of his Lost Notebook [9] and claimed that there are many results for \(G(q) \) similar the results obtained for the famous Rogers-Ramanujan continued fraction (1.7).

The Ramanujan Göllnitz-Gordon continued fraction [6, p. 44], [4], [9] is defined as follows:

\[
L(q) := \frac{q^{1/2} f(-q^3, -q^5)}{f(-q, -q^7)} = \frac{q^{1/2}}{1 + \frac{q^2}{1 + q^3 + \frac{q^4}{1 + q^5 + \cdots}}, \ |q| < 1, \tag{1.9}
\]

Motivated by the above cited works on the continued fractions, in this paper, we established the modular relation between continued fraction \(H(q) \) and \(H(q^n) \).

\[
H(q) := \frac{1 - \varphi(-q)}{1 + \varphi(-q)} = \frac{q}{1 - q + \frac{q^3}{1 - q^3 + \frac{q^5}{1 - q^5 + \cdots}}}. \tag{1.10}
\]

The continued fraction (1.10) was first established by Nipen Saikia [7], they established some modular relations connecting \(H(q) \) and \(H(q^n) \) and some explicit evaluations of \(H(q) \).

2 Preliminary results

In this section, we collect the necessary results required to prove our main results.

Lemma 2.1.

\[
\varphi(q) = \sqrt{z} \tag{2.1}
\]

and

\[
\varphi(-q) = \sqrt{z(1 - t)^{1/4}}. \tag{2.2}
\]

For the proofs of (2.1) and (2.2), see [2, Entry 10(i),(ii), p.122].

Lemma 2.2. If \(\beta \) is of degree 2 over \(\alpha \), then

\[
(1 - \sqrt{1 - \alpha})(1 - \sqrt{\beta}) = 2\sqrt{\beta(1 - \alpha)}. \tag{2.3}
\]

For a proof of (2.3), see [1, Entry 17.3.1, p.385].

Lemma 2.3. If \(\beta \) has degree 3 over \(\alpha \), then

\[
(\alpha \beta)^{1/4} + \{(1 - \alpha)(1 - \beta)\}^{1/4} = 1. \tag{2.4}
\]

For a proof of (2.4), see [2, Entry 5(ii), p.230].

Lemma 2.4. If \(\beta \) has degree 4 over \(\alpha \), then

\[
(1 - \sqrt{1 - \alpha})(1 - \sqrt[4]{\beta}) = 2\sqrt[4]{\beta(1 - \alpha)}. \tag{2.5}
\]
For a proof of (2.5), see [1, Entry 17.3.2, p.385].

Lemma 2.5.

\[\varphi(-q) = \frac{1 - H(q)}{1 + H(q)} \]

(2.6)

For the proofs of (2.6), easily from (1.10).

3 Relation Between \(H(q) \) and \(H(q^n) \)

Theorem 3.1. If \(u := H(q), \ v := H(-q), \ z := H(q^2), \) and \(w := H(-q^2), \)

then

\[
(-w^2 + 2wv^2 - w^2z^2 - 2w^2zv^2 - z^2 - 2zv^2 + 4wz - 1 + 2wz^2v^2)w^2
+ (2w^2v + 2v - 4wz^2v + 2w^2z^2v + 4zv + 4w^2zv - 4wv - 8wzv + 2z^2v^2)u
+ 2wz^2 - w^2z^2v^2 - 2wz^2w + 2w - w^2v^2 - v^2 - z^2v^2 - 2z + 4wzv^2 = 0.
\]

(3.1)

Proof. From the equations (2.1) and (2.2), we get

\[
\frac{\varphi(-q)}{\varphi(q)} = (1-t)^{1/4}, \quad 0 < t < 1.
\]

(3.2)

The equation (2.3) can be written as

\[
\beta = \left[\frac{1 - \sqrt{1 - \alpha}}{1 + \sqrt{1 - \alpha}} \right]^2.
\]

(3.3)

Employing the equations (2.6) and (3.2) in the above equation (3.3), we obtain (3.1).

Theorem 3.2. If \(u := H(q), \ v := H(-q), \ z := H(q^3), \) and \(w := H(-q^3), \)

then

\[
12w^3z^2v + 6w^2z^4v^2 - 12w^2zv - 12w^3zv^2 + 24w^2z^2v^2 + 12w^3z^2v^3
+ 6w^4z^2v^2 - 12w^3z^3v^2 - 12w^2zv^3 - 12w^2z^2v - 12w^3v^2 + w^4zv^4
- 4w^3z^3v + 4wz^4v^3 + 6w^2z^2v^4 + 12w^2z^3v^4 - 4w^3z^4v^4 - 12w^3z^2v^4 + 4w^4z^4v
- 12w^2z^3v^3 - 4w^4z^3v + 12w^2z^2v + (12w^3z^2v + 4w^3z^4v^3 + 6w^2z^4v^2 - 12w^2zv
- 4w^4zv - 12w^3z^2v^2 + 24w^2z^3v^2 + 12w^3z^2v^3 + 4wz^4v - 4w^3zv^4 + 6w^4z^2v^2 + 1
- 12w^3z^4v^2 - 12w^2zv^3 - 12w^2zv^4 + 12w^2z^2v + 12w^2z^2v^4 + 6w^2z^3v^2 - 12wz^3v^2
- 4w^4z^3v^3 - 12w^2z^3v^4 + 12w^2z^2v^4 + 6w^2z^2v^4 - 4w^3z^3v + 6w^2z^2v - 4wz
+ 6w^2z^2v - 4w^3v - 4z^3v + 6w^2v^2 - 4zv^3 + 4wz^3 + 4w^4v + z^4v^4)u^4 + (12w^4z^3v^2
+ 40w^3z^3v + 72w^2z^2v^2 + 40wzv + 12w^4z^2v^2 + 24w^3zv - 12w^2z^2v - 12w^2z^4v
+ 12w^3zv^2 + 24wzv^3 - 12w^3z^4v^2 + 40w^3z^3v - 72w^2z^2v^2 - 4w^4z^4v - 12w^4z^2v^2
\]

\]
Theorem 3.3. Some new modular identities of Ramanujan continued fraction

Proof.

\[
-72w^3z^2v^2 + 24w^3z^3v^3 + 72w^2z^3v^2 + 4w^4z^3v^4 + 24wz^3v + 12w^2z^3v^4 \\
-12w^4z^3v^3 - 4w^4z^3v^4 - 72w^2z^3v^2 - 12w^3z^2v + 12w^4z^3v^4 - 12w^4z^2v \\
+4w^3zv^2 - 72w^2z^3v - 4v - 12wz^2 - 4wz^4 + 12w^2z + 12w^2z^3 - 12w^3z^2 \\
+4w^4z - 4w^3 + 4z^2 - 12z^2v - 12z^3v - 12w^2v - 12w^3v^3 + 12zv^2 + 4zv^4 \\
-12wv^2 - 4wv^4 - 12w^3z^3v^2 - 4w^4z^3v^4 + 6z^3v^2 - 4z^3v^4v^3 + (72w^3z^2v \\
+12w^3z^3v^2 + 24w^2z^4v^2 - 72w^2zv - 12w^4zv + 6w^2z^4v^4 - 72w^3zv^2 \\
+168w^2z^2v^2 + 72w^3z^3v^3 + 12w^4v - 12w^3zv^4 + 24w^4z^2v^2 - 72w^3z^3v^2 \\
+6w^4z^2v^4 - 72w^2zv^3 - 72wz^2v^2 - 72w^2z^3v - 12wzv^4 - 12w^4z^3v + 12w^4z^3v^3 \\
+6w^4z^4v^2 + 24w^2z^2v^4 + 72wz^2v^3 - 12w^3z^3v^4 - 72wz^3v^2 - 12w^4z^3v^3 \\
+12w^3z^3v - 72w^2z^3v^3 + 6z^2 - 12w^4z^3v^3 + 72w^2zv - 12w^3zv^4 - 12w^3v \\
+24w^3z^2 + 6w^2z^3 - 12w^2z^3 + 6w^4z^2 - 12wz + 24^2z^2 - 12zv \\
+6z^2v^4 + 12wv + 12w^3v - 12z^3v + 24^2z^2v + 6w^2v^4 - 12zv^3 + 12w^3v \\
+12w^3v^3 + 6w^4v^2 - 12z^3v^3 + 6z^2v^2 + 6w^2v^2 + 6w^2v^2 + (12w^4z^2v^2 - 4z^4v \\
+72w^2zv^2 + 24wzv + 12w^4zv^3 + 40w^3zv - 12w^2z^4v - 12w^2z^4v^3 + 12w^2zv^4 \\
+40wzv^3 - 12w^3z^4v^2 - 4w^4z^4v^3 + 24w^3z^3v - 72w^2z^2v^2 - 12w^3z^4v \\
-72w^4z^2v^2 + 12w^3z^3v^3 + 72w^2z^3v^2 + 40wz^3v + 12w^2z^3v^4 + 4w^4z^4v^4 \\
-12w^3z^2v^3 - 72w^3z^3v^3 - 4w^3v^2 - 12w^3z^2v^4 - 12w^2z^2v^4 - 12w^3z^4v^3 \\
+24w^3z^3v^3 - 72w^2z^2v^2 + 4z - 4w - 12w^2z + 12w^2z^3 - 12w^2z^2 - 4w^3 \\
-4w^3z^3 + 4w^3z^2 - 12z^2v - 12z^2v^3 + 12w^2zv - 4w^4v + 24wz^3v^3 - 12w^2v^3 \\
+12zv^2 - 12w^2v^2 - 12w^2v^2 - 12w^3v^4 + 12z^3v^2 + 4z^3v^4)u - 4wz^3 + 6w^2z^2 \\
-4w^3z + w^4 + z^4 + v^4 + 6z^2v^2 - 4zv + 4wv + 6w^2v^2 + 4w^3v^3 - 4z^3v^3 = 0.
(3.4)

\[
\text{Proof.}\quad \text{The equation (2.3) can be written as}
\]

\[
\alpha\beta = [1 - \{(1 - \alpha)(1 - \beta)\}]^{1/4}.
(3.5)
\]

Employing the equations (2.6) and (3.2) in the above equation (3.5), we obtain (3.4).

\[\square\]

Theorem 3.3. If \(u := H(q), v := H(-q), z := H(q^4),\) and \(w := H(-q^4),\) then

\[
-6v^4w^4z^2 - 6v^4w^2z^4 + 16v^4z^3v - 36v^4w^2z^2 - 24v^4wz^2 - v^4w^4z^4 \\
+16v^4w^3z^3 + 4v^4w^4z^3 + 24v^4w^2z^2 - 4v^4w^3z^4 + 4v^4w^4z + 24v^4w^2z^3 \\
+(-1 + 48v^4wz^2 - 8v^4w^4z^3 - 48v^4w^2z + 8v^4w^3z^4 - 8v^4w^3z - 48v^4w^2z^3
\]
\[+ 48v^4w^3z^2 + 8v^4wz + 16wz + 4z - 4w - 6w^2 - 6z^2 - 24wz^2 + 16wz^3 \\
- 4wz + 24w^2z - 36wz^2 + 24w^2z^3 - 6w^2z^4 + 16wz^3 - 24wz^3 - 8v^4z \\
+ 16w^3z^3 - 4w^3z^4 + 4w^4z - 6w^4z^2 + 4w^4z^3 - w^4z^4 - 4w^3 - w^4 + 4z^3 \\
- z^4 + 8v^4w^3 - 8v^4w^3 + 8v^4w^4 - 24v^4w^3z^2 + 16v^4wz - 4v^4wz^4 \\
+ (144v^2w^3z^2 - 36v^2w^3z^2 + 24v^2w^3z^4 - 144v^2w^2z + 144v^2w^2z + 96v^2wz \\
- 36v^2w^2z^4 + 96v^2w^3z^3 + 96v^2wz^3 - 6w^2w^4z^4 - 144v^2w^2z^4 - 24v^2w^4z \\
- 24v^2w^4z^3 + 24v^2w^4z^4 - 216v^2w^2z^2 + 24v^2w^3z^2 - 6w^2 - 24v^2 - 36v^2w^2 \\
+ 24v^2w^3 - 6w^2w^4 - 36v^2z^2 - 24v^2z^2 - 6v^2z^4 + 24v^2w^2w^2 + (16v^3w^4 \\
+ 16v^3w^3z^4 - 32vw^4z^3 + 32vw^4z^2 + 24v^3w^4z^2 + 96v^3w^3z^2 - 96v^3w^3z^3 \\
+ 32vw^4z^3 - 192vw^3z^2 + 144v^3w^3z^2 + 192vw^2z + 96v^3w^3z^2 \\
- 64v^3w^3z^2 - 64v^3w^3z^3 - 192vw^3z^2 - 32vw^4z^4 + 4v^3w^3z^4 - 64v^3wz \\
- 64v^3w^3z^2 - 96v^3w^3z^3 - 64v^3w^3z^4 - 64v^3w^3z^5 + 24v^3w^3z^4 - 32vw^3 + 32vz \\
+ 32vz^3 - 32vw + 4v^3 - 16v^3 + 16wv^3 + 24v^2v^3 + 16v^3w^3 + 4v^3w^3 + 4v^3w^4 + 4v^3z^4 \\
- 16v^3z^3 + 24v^2z^4)u + 16^4w^3z^3 + (-32v^3w^4z^4 - 32v^3w^3z^4 + 16v^4z^4 \\
- 16vw^4z + 24vw^2z^4 - 192v^3w^3z^2 + 192v^3w^2z^3 + 16vw^4z^3 + 144v^2w^2z^2 \\
- 64vw^3z^3 + 96vw^2z - 64vw^2z^2 - 64vw^2z - 96vw^2z^2 - 192vw^3z^2 \\
+ 32v^3w^4z^3 + 96vw^3z^2 + 16vw^3z^4 + 24vw^4z^2 + 32vw^4z + 192vw^3z^2 \\
- 64vw^3z^2 + 4vw^4z^4 + 4v + 24vw^2 + 16wv^3 + 4vw^4 - 16vz + 24wz^2 - 16vz^3 \\
+ 4w^4z + 16vw + 16vz^3 - 32vw^3 - 32vw^3z^2 + 32vw^3z^3)u - 8z + 8w + 48w^2z^2 \\
- 48w^2z - 48w^2z^2 + 48w^2z^3 + 8w^2z^4 - 8w^2z^4 - 8w^4z - 8w^4z^3 + 8w^3 - 8z^3 + 8w^4z^3 \\
- v^4 - 6v^4w^2 - 4v^4w^2 - v^4w^4 + 4v^4z - 6v^4z^2 + 4v^4z^3 - v^4z^4 - 4v^4w = 0. \tag{3.6} \\
\]

Proof. The equation (2.4) can be written as

\[\beta = \left[\frac{1 - \sqrt{1 - \alpha}}{1 + \sqrt{1 - \alpha}} \right]^4. \tag{3.7} \]

Employing the equations (2.6) and (3.2) in the above equation (3.7), we obtain (3.6). \hfill \square

References

Some new modular identities of Ramanujan continued fraction

Received: December, 2012