On Ginsberg Theorem in Base b

Abdulkareem Hamarsheh

Department of Mathematics
Al-Hussein Bin Talal University, Ma’an-Jordan
abkmsaleh@yahoo.com

Copyright © 2013 Abdulkareem Hamarsheh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In 2004, B. Ginsberg proved that if the period of a reciprocal of a prime $p \geq 5$ has length $r = 3w$ and is split into three pieces then their sum is a string of 9’s. In this note we give a very simple proof of the generalized theorem to any base b.

Mathematics Subject Classification: 97F40, 11A05

Keywords: Midy’s theorem, Ginsberg theorem, repeating decimals

1 INTRODUCTION

According to Dickson [6], E. Midy proved in 1836 that if the period of a reciprocal of a prime $p \geq 5$ has even length and is split into two half-periods then the sum of the halves is a string of 9’s. For example, $\frac{1}{7} = 0.142857$ with $142 + 857 = 999$, and $\frac{1}{17} = 0.0588235294117647$ with $05882352 + 94117647 = 99999999$. Midy’s theorem holds also for reciprocals of some composite numbers. For example, $\frac{1}{11} = 0.090909$ with $090 + 909 = 999$, and $\frac{1}{121} = 0.0082644628099173553719$ with $00826446280 + 99173553719 = 99999999999$.

In 2004, B. Ginsberg [3], generalized Midy’s theorem to decimal expansions with period \(r = 3w \). For example, \(\frac{1}{7} = 0.142857 \) with \(14+28+57=99 \), and \(\frac{1}{37} = 0.032258064516129 \) with

\[
03225+80645+16129=99999.
\]

Ginsberg theorem holds also for reciprocals of some composite numbers. For example, \(\frac{1}{57} = 0.017543859649122807 \) with

\[
017543+859649+122807=999999.
\]

2 GINSBERG THEOREM

Many authors have given proofs of Midy’s theorem; see, for example, [2],[1],[7],[5], and [4]. In this paper we will give a very simple proof of Ginsberg theorem, generalized to any base \(b \), based only on modular arithmetic.

We begin with the following lemma:

Lemma 1. Let \(m \) be relatively prime to the base \(b \). Suppose that the period in base \(b \) of the reciprocal of \(m \) has length \(r = 3w \): \(\frac{1}{m} = 0.[a_1a_2...a_{3w}]_b \).

If \(1 + b^w + b^{2w} \equiv 0 \mod m \), then \(a_w + a_{2w} + a_{3w} \equiv b - 1 \mod b \)

and \(a_i + a_{w+i} + a_{2w+i} = b - 2b - 2, 2b - 2, 0, 2b - 1, \forall i = 1, 2, ..., w - 1. \)

Proof. Choose \(0 \leq c_i < m; i = 1, 2, ..., r = 3w \), such that \(b^i \equiv c_i \mod m \).

By Lemma 1 in [1] we have \(a_i \equiv -m^{-1}c_i \mod b; i = 1, 2, ..., 3w \). Now since \(1 + b^w + b^{2w} \equiv 0 \mod m \) and \(gcd(m,b) = 1 \) then \(c_i + c_{w+i} + c_{2w+i} \equiv 0 \mod m \). Since \(1 \leq c_i \leq m - 1 \) for all \(i \) then \(c_i + c_{w+i} + c_{2w+i} = m \) or \(2m \). Thus \(a_i + a_{w+i} + a_{2w+i} \equiv -m^{-1}(c_i + c_{w+i} + c_{2w+i}) \equiv -1 \) or \(-2 \mod b \).

Therefore \(a_i + a_{w+i} + a_{2w+i} \equiv b - 1 \mod b \) and hence \(a_i + a_{w+i} + a_{2w+i} = b - 2b - 2, 2b - 2, 0, 2b - 1. \) Since \(c_{3w} = 1 \) and \(c_w + c_{2w} + c_{3w} = m \) or \(2m \) then \(c_w + c_{2w} + c_{3w} = m \) and hence \(a_w + a_{2w} + a_{3w} \equiv -m^{-1}(m) \equiv -1 \equiv b - 1 \mod b. \)

Now we use our lemma to give a very simple proof of Ginsberg theorem in base \(b \).

Theorem 1. Let \(m \) be relatively prime to the base \(b \). Suppose that the period in base \(b \) of the reciprocal of \(m \) has length \(r = 3w \): \(\frac{1}{m} = 0.[a_1a_2...a_{3w}]_b \).

If \(1 + b^w + b^{2w} \equiv 0 \mod m \), then \(B_1 + B_2 + B_3 = 10^w - 1 \), where \(B_1 = a_1a_2...a_w, B_2 = a_{w+1}a_{w+2}...a_{2w}, \) and \(B_3 = a_{2w+1}a_{2w+2}...a_{3w} \).
Proof. Note that \(m[(a_{3w} + b^w a_{2w} + b^2w a_w) + b(a_{3w-1} + b^w a_{2w-1} + b^{2w} a_{w-1}) + b^2(a_{3w-2} + b^w a_{2w-2} + b^{2w} a_{w-2}) + \ldots + b^{w-1}(a_{2w+1} + b^w a_{w+1} + b^{2w} a_1)] = b^{3w} - 1 = (b^w - 1)(1 + b^w + b^{2w}) \). Let \(c = b^w - 1 \). Then mod \(c \) we have \(b^w \equiv b^{2w} \equiv 1 \) and since \(1 + b^w + b^{2w} \equiv 0 \mod m \) then \((a_{3w} + a_{2w} + a_w) + b(a_{3w-1} + a_{2w-1} + a_{w-1}) + b^2(a_{3w-2} + a_{2w-2} + a_{w-2}) + \ldots + b^{w-1}(a_{2w+1} + a_{w+1} + a_1) \equiv 0 \mod c \). So, \(B_1 + B_2 + B_3 \equiv 0 \mod c \). That is, \(B_1 + B_2 + B_3 = k(b^w - 1) \) for some \(k \in \mathbb{N} \). Using the previous lemma we see that \(B_1 + B_2 + B_3 \leq (2b - 1) + b(2b - 1) + b^2(2b - 1) + \ldots + b^{w-1}(2b - 1) < 3c \). Now assume, on the contrary, that \(B_1 + B_2 + B_3 \neq b^w - 1 \). Then we would have \(B_1 + B_2 + B_3 = 2c \equiv b - 2 \mod b \). However, by the previous lemma, \(B_1 + B_2 + B_3 \equiv a_w + a_{2w} + a_{3w} \equiv b - 1 \mod b \), a contradiction. Therefore \(B_1 + B_2 + B_3 = c = b^w - 1 \), a string of \((b - 1)\)'s.

Corollary 1. [3] Suppose that the period of the reciprocal of a prime \(p \geq 5 \) has length \(r = 3w: \frac{1}{p} = 0.a_1a_2...a_{3w} \).

Then \(a_1a_2...a_w + a_{w+1}a_{w+2}...a_{2w} + a_{2w+1}a_{2w+2}...a_{3w} \) is a string of 9’s.

Proof. Since \(r = 3w \) is the order of 10 mod \(p \) then \(10^{3w} - 1 = (10^w - 1)(1 + 10^w + 10^{2w}) \equiv 0 \mod p \) and \(10^w \) is not congruent to 1 mod \(p \). So \(1+10^w+10^{2w} \equiv 0 \mod p \). The result now follows immediately from the above theorem.

References

Received: May, 2013