Some Properties of a Semi-symmetric Non-metric Connection on a Sasakian Manifold

S. K. Chaubey
Department of Mathematics, Galgotias University
Greater Noida, U. P.–201308, India
sk22_math@yahoo.co.in

A. C. Pandey
Department of Mathematics, Bramanand P. G. College
Kanpur–208004, U. P., India
acpbnd73@gmail.com

Copyright © 2013 S. K. Chaubey and A. C. Pandey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The object of the present paper is to study some properties of semi-symmetric non-metric connection on a Sasakian manifold.

Mathematics Subject Classification: 53C15, 53C25

Keywords: Semi-symmetric non-metric connection, Sasakian manifold, \(\phi \)--projectively flat and locally \(\phi \)--symmetric Sasakian manifolds

1 Introduction

Let \((M_n, g) \) be a Riemannian manifold of dimension \(n \). A linear connection \(\nabla \) in \((M_n, g) \), whose torsion tensor \(T \) of type \((1, 2)\) is defined as

\[
T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]
\]

for arbitrary vector fields \(X \) and \(Y \), is said to be torsion free or symmetric if \(T \) vanishes, otherwise it is non-symmetric. If the connection \(\nabla \) satisfies \(\nabla g = 0 \) in \((M_n, g) \), then it
is called metric connection otherwise it is non-metric. In [1], Friedmann and Schouten introduced the notion of semi-symmetric linear connection on a differentiable manifold. Hayden [2] introduced the idea of semi-symmetric linear connection with non zero torsion on a Riemanian manifold. The idea of semi-symmetric metric connection on Riemannian manifold was introduced by Yano [3]. He proved that a Riemannian manifold with respect to the semi-symmetric metric connection has vanishing curvature tensor if and only if it is conformally flat. This result was generalized for vanishing Ricci tensor of the semi-symmetric metric connection by T. Imai ([4], [5]). Various properties of such connection have studied by many geometers. Agashe and Chaffe [7] defined and studied a semi-symmetric non-metric connection in a Riemannian manifold. This was further developed by Agashe and Chaffe [8], Prasad [9], De and Kamilya [12], Tripathi and Kakkar [14], Pandey and Ojha [10], Chaturvedi and Pandey [15] and other geometers. Sengupta, De and Binh [18], De and Sengupta [11] defined new type of semi-symmetric non-metric connections on a Riemannian manifold and studied some geometrical properties with respect to such connections. In this connection, the properties of semi-symmetric non-metric connections have studied by Özgür [25], Ahmad and Özgür [26], Özgür and Sular [28], Kumar and Chaubey [20], Dubey, Chaubey and Ojha [19] and many other geometers. In 2008, Tripathi introduced the generalized form of a new connection in Riemannian manifold [24]. In [16, 17], Chaubey defined semi-symmetric non-metric connections on an almost contact metric manifold and studied its different geometrical properties. Some properties of such connection [17] have further studied by Jaiswal and Ojha [21], Chaubey and Ojha [22] and Chaubey [17]. In the present paper, we studied the properties of such connection in Sasakian manifolds.

The present paper is organized as follows. Section 2 is preliminaries in which some basic definitions are given. The next section deals with the semi-symmetric non-metric connection. Section 4 is concerned with the projective and Riemannian curvature tensors equipped with semi-symmetric non-metric connection and proved that for a Sasakian manifold with the Riemannian connection is ξ-projectively flat if and only if it is also ξ-projectively flat with respect to the semi-symmetric non-metric connection. It has also shown that if a Sasakian manifold is ϕ-projectively flat, then the manifold is a η-Einstein manifold. In the last we have shown the necessary and sufficient condition for a Sasakian manifold to be locally ϕ-symmetric with respect to the semi-symmetric non-metric connection.

2 Preliminaries

An n-dimensional Riemannian manifold (M_n, g) of class C^∞ with a 1-form η, the associated vector field ξ and a $(1, 1)$ tensor field ϕ satisfying

$$\phi^2 X + X = \eta(X)\xi, \quad (2)$$

$$\phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1, \quad (3)$$
for arbitrary vector field X, is called an almost contact manifold. The system (ϕ, ξ, η) is called an almost contact structure to M_n [6]. If the associated Riemannian metric g in M_n satisfy

$$g(\phi X, \phi Y) = g(X, Y) - \eta(Y)\eta(Y),$$

(4)

for arbitrary vector fields X, Y in M_n, then (M_n, g) is said to be an almost contact metric manifold. Putting ξ for X in (4) and using (3), we obtain

$$g(\xi, Y) = \eta(Y).$$

(5)

Also,

$$\varphi(X, Y) = g(\phi X, Y)$$

(6)

gives

$$\varphi(X, Y) + \varphi(Y, X) = 0.$$

(7)

An almost contact metric manifold M_n is said to be a Sasakian manifold [6] if it satisfies the following tensorial relation

$$(\nabla_X \phi)Y = g(X, Y)\xi - \eta(Y)X,$$

(8)

for arbitrary vector fields X and Y on M_n. Here ∇ denotes the Levi-Civita connection of the metric g. A normal contact metric manifold of dimension n greater than or equal to three is called a Sasakian manifold.

Let R be the curvature tensor of type $(1, 3)$ and S is the Ricci tensor of type $(0, 2)$ with respect to the Levi-Civita connection ∇, then the following relations hold in a Sasakian manifold for any arbitrary vector fields X and Y:

$$\nabla_X \xi = -\phi X,$$

(9)

$$R(X, Y)\xi = \eta(Y)X - \eta(X)Y,$$

(10)

$$(\nabla X \eta)(Y) = g(X, \phi Y),$$

(11)

$$R(\xi, X)Y = (\nabla X \phi)(Y),$$

(12)

$$S(\phi X, \phi Y) = S(X, Y) - (n - 1)\eta(X)\eta(Y),$$

(13)

$$S(X, \xi) = (n - 1)\eta(X).$$

(14)

The projective curvature tensor is an important tensor having one-one correspondence between each coordinate neighbourhood of an n-dimensional Riemannian manifold and a domain of Euclidean space such that there is one-one correspondence between geodesics of Riemannian manifold with straight line in Euclidean space. A manifold of dimension n, $(n \geq 3)$ is projectively flat if the tensorial relation of projective curvature tensor vanishes. The projective curvature tensor is given by

$$P(X, Y)Z = R(X, Y)Z - \frac{1}{n - 1}\{S(Y, Z)X - S(X, Z)Y\},$$

(15)

for X, Y and $Z \in T(M_n)$, where $T(M_n)$ denotes the tangent space at each point of the manifold M_n. The manifold M_n is projectively flat if and only if the manifold is of constant curvature.
Definition 2.1 A Sasakian manifold M_n is said to be ξ–projectively flat if the condition $P(X,Y) \xi = 0$ holds on M_n for arbitrary vector fields X and Y.

Definition 2.2 A Sasakian manifold M_n is said to be ϕ–projectively flat if

$$\phi^2(P(\phi X, \phi Y)\phi Z) = 0,$$

for vector fields $X, Y, Z \in T(M_n)$.

Analogous to the above definitions, we define the following definitions:

Definition 2.3 A Sasakian manifold M_n equipped with semi-symmetric non-metric connection $\tilde{\nabla}$ is said to be ξ–projectively flat with respect to the semi-symmetric non-metric connection $\tilde{\nabla}$ if the condition $\tilde{P}(X,Y) \xi = 0$ holds on M_n for arbitrary vector fields X and Y.

Definition 2.4 A Sasakian manifold M_n equipped with semi-symmetric non-metric connection $\tilde{\nabla}$ is said to be ϕ–projectively flat with respect to the semi-symmetric non-metric connection $\tilde{\nabla}$ if the condition

$$\phi^2(\tilde{P}(\phi X, \phi Y)\phi Z) = 0$$

holds for vector fields $X, Y, Z \in T(M_n)$.

3 Semi-symmetric non-metric connection on Sasakian manifold

A linear connection $\tilde{\nabla}$ given by

$$\tilde{\nabla}_X Y = \nabla_X Y + \phi(X,Y)\xi$$

is called a semi-symmetric non-metric connection [17] if the torsion tensor \tilde{T} of the connection $\tilde{\nabla}$ is defined by

$$\tilde{T}(X,Y) = \tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X,Y],$$

for any vector fields X, Y satisfies

$$\tilde{T}(X,Y) = 2\phi(X,Y)\xi$$

and

$$(\tilde{\nabla}_X g)(Y,Z) = -\eta(Y)\phi(X,Z) - \eta(Z)\phi(X,Y)$$

for arbitrary vector fields X, Y and Z.
It is well known [21, 22] that
\[(\tilde{\nabla}_X \phi)(Y, Z) = (\nabla_X \phi)(Y, Z),\] (22)
\[(\tilde{\nabla}_X \eta)(Y) = (\nabla_X \eta)(Y) - g(%X, Y)%.\] (23)

Interchanging \(X\) and \(Y\) in (23), we have
\[(\tilde{\nabla}_Y \eta)(X) = (\nabla_Y \eta)(X) - g(%Y, X%).\] (24)

Subtracting (24) from (23) and using (6), we get
\[(\tilde{\nabla}_X \eta)(Y) - (\tilde{\nabla}_Y \eta)(X) = (\nabla_X \eta)(Y) - (\nabla_Y \eta)(X) - 2g(%X, Y%).\] (25)

An almost contact metric manifold \(M_n\) is said to be an almost Sasakian manifold [27] with respect to the Levi-Civita connection \(\nabla\) if and only if
\[\phi(X, Y) = \frac{1}{2}[(\nabla_X \eta)(Y) - (\nabla_Y \eta)(X)].\] (26)

In view of (25) and (26), we state the following theorem:

Theorem 3.1 Let \(M_n\) be an almost contact metric manifold equipped with a semi-symmetric non-metric connection \(\tilde{\nabla}\), then \(M_n\) is an almost Sasakian manifold if and only if
\[(\tilde{\nabla}_X \eta)(Y) = (\tilde{\nabla}_Y \eta)(X).\] (27)

4 Curvature tensor of a Sasakian manifold with respect to semi-symmetric non-metric connection

A relation between the curvature tensors \(R\) and \(\tilde{R}\) of the Levi-Civita connection \(\nabla\) and semi-symmetric non-metric connection \(\tilde{\nabla}\) respectively is given by [17, 22]
\[\tilde{R}(X, Y, Z) = R(X, Y, Z) + g(%Y, Z)\nabla_X \xi - g(%X, Z)\nabla_Y \xi + g((\nabla_X \phi)(Y) - (\nabla_Y \phi)(X), Z)\xi,\] (28)

for arbitrary vectors fields \(X\), \(Y\) and \(Z\). In consequence of (8) and (9), (28) becomes
\[\tilde{R}(X, Y)Z = R(X, Y)Z - g(%Y, Z)\phi X + g(%X, Z)\phi Y - \eta(Y)g(X, Z)\xi + \eta(X)g(Y, Z)\xi.\] (29)

Contracting (29) along \(X\), we get
\[\tilde{S}(Y, Z) = S(Y, Z)\] (30)
which give

\[\tilde{Q}Y = QY \] \hspace{1cm} (31)

and

\[\tilde{r} = r, \] \hspace{1cm} (32)

where \(\tilde{S} \) denotes the Ricci tensor with respect to the semi-symmetric non-metric connection \(\tilde{\nabla} \) and \(\tilde{r} \); \(r \) denote the scalar curvatures with respect to the semi-symmetric non-metric connection \(\tilde{\nabla} \) and the Levi-Civita connection \(\nabla \) respectively. Thus with the help of (30) and (32), we state the following corollaries:

Corollary 1 If \(M_n \) is an \(n \)-dimensional Sasakian manifold equipped with a semi-symmetric non-metric connection \(\tilde{\nabla} \) then the Ricci tensors with respect to the semi-symmetric non-metric connection \(\tilde{\nabla} \) and Levi-Civita connection \(\nabla \) are invariant.

Corollary 2 If an \(n \)-dimensional Sasakian manifold \(M_n \) admits a semi-symmetric non-metric connection \(\tilde{\nabla} \), then the scalar curvatures with respect to the semi-symmetric non-metric connection \(\tilde{\nabla} \) and Levi-Civita connection \(\nabla \) coincide.

Analogous to (15), the projective curvature tensor \(\tilde{P} \) with respect to the semi-symmetric non-metric connection \(\tilde{\nabla} \) is defined as

\[\tilde{P}(X,Y)Z = \tilde{R}(X,Y)Z - \frac{1}{n-1}[\tilde{S}(Y,Z)X - \tilde{S}(X,Z)Y], \] \hspace{1cm} (33)

for arbitrary vector fields \(X, Y, Z \).

The generalised projective curvature tensor \(\bar{P} \) [27] with respect to the Levi-Civita connection \(\nabla \) is defined as

\[\bar{P}(X,Y)Z = R(X,Y)Z + \frac{1}{n+1}\{S(X,Y) - S(Y,X)\}Z \]
\[+ \frac{1}{(n^2 - 1)}\{nS(X,Z) + S(Z,X)\}Y - \{nS(Y,Z) + S(Z,Y)\}X, \] \hspace{1cm} (34)

for arbitrary vector fields \(X, Y, Z \).

Analogous to (34), we define the generalized projective curvature tensor \(\tilde{P} \) with respect to the semi-symmetric non-metric connection \(\tilde{\nabla} \) as

\[\tilde{P}(X,Y)Z = \tilde{R}(X,Y)Z + \frac{1}{n+1}\{\tilde{S}(X,Y) - \tilde{S}(Y,X)\}Z \]
\[+ \frac{1}{(n^2 - 1)}\{n\tilde{S}(X,Z) + \tilde{S}(Z,X)\}Y - \{n\tilde{S}(Y,Z) + \tilde{S}(Z,Y)\}X. \] \hspace{1cm} (35)

In consequence of (29), (30), (33) and the symmetric properties of Ricci tensor, the above relation becomes

\[\tilde{P}(X,Y)Z = \tilde{P}(X,Y)Z, \] \hspace{1cm} (36)
where \tilde{P} denotes the projective curvature tensor with respect to the semi-symmetric non-metric connection $\tilde{\nabla}$ and \tilde{Q} is the Ricci operator with respect to the semi-symmetric non-metric connection $\tilde{\nabla}$, defined as

$$\tilde{S}(X,Y) \overset{\text{def}}{=} g(\tilde{Q}X,Y),$$

(37)

for arbitrary vector fields X and Y. With the help of (15), (29), (30), (33) and the symmetric properties of Ricci tensor, it follows that

$$\tilde{P}(X,Y)Z = P(X,Y)Z - g(\phi Y,Z)\phi X + g(\phi X,Z)\phi Y - \eta(Y)g(X,Z)\xi + \eta(X)g(Y,Z)\xi.$$

(38)

Replacing Z by ξ in (38) and then using (3) and (5), we find

$$\tilde{P}(X,Y)\xi = P(X,Y)\xi.$$

(39)

Thus in consequence of definition (2) and equation (39), we state the following theorem:

Theorem 4.1 A Sasakian manifold M_n is said to be ξ–projectively flat with respect to the Levi-Civita connection ∇ if and only if it is ξ–projectively flat with respect to the semi-symmetric non-metric connection $\tilde{\nabla}$.

Let us suppose that the Sasakian manifold M_n is projectively flat with respect to the semi symmetric non-metric connection $\tilde{\nabla}$, then we have

$$g(\tilde{P}(\phi X,\phi Y)\phi Z,\phi W) = 0$$

(40)

for all $X, Y, Z \in T(M_n)$. With the help of equations (33) and (40), we find

$$g(\tilde{R}(\phi X,\phi Y)\phi Z,\phi W) = \frac{1}{n-1}[\tilde{S}(\phi Y,\phi Z)g(\phi X,\phi W) - \tilde{S}(\phi X,\phi Z)g(\phi Y,\phi W)].$$

(41)

We suppose that the set $\{e_1, e_2, e_3, \ldots, e_{n-1}, \xi\}$ is an orthonormal basis of an n–dimensional Sasakian manifold M_n then the set $\{\phi e_1, \phi e_2, \phi e_3, \ldots, \phi e_{n-1}, \xi\}$ also form the basis of M_n. Taking $X = W = e_i$ in the above equation and then taking summation over i, $1 \leq i \leq (n - 1)$, we get

$$\sum_{i=1}^{n-1} g(\tilde{R}(\phi e_i,\phi Y)\phi Z,\phi e_i) = \frac{1}{n-1} \sum_{i=1}^{n-1} [\tilde{S}(\phi Y,\phi Z)g(\phi e_i,\phi e_i) - \tilde{S}(\phi e_i,\phi Z)g(\phi Y,\phi e_i)].$$

(42)

In view of (3), (5), (29) and (30), we have

$$\sum_{i=1}^{n-1} g(\tilde{R}(\phi e_i,\phi Y)\phi Z,\phi e_i) = \sum_{i=1}^{n-1} g(R(\phi e_i,\phi Y)\phi Z,\phi e_i) - g(\phi Y,\phi Z)$$

$$= S(Y,Z) - R(\xi,Y,Z,\xi) - (n-1)\eta(Y)\eta(Z) - g(\phi Y,\phi Z)$$

$$= \tilde{S}(Y,Z) - 2g(Y,Z) - (n-3)\eta(Y)\eta(Z),$$

(43)
where
\[\sum_{i=1}^{n-1} g(\phi e_i, \phi e_j) = n - 1 \] (44)

and
\[\sum_{i=1}^{n-1} \tilde{S}(\phi e_i, \phi Z) g(\phi Y, \phi e_i) = \tilde{S}(\phi Y, \phi Z). \] (45)

With the help of (42), (43), (44) and (45), it follows that
\[\tilde{S}(Y, Z) - 2g(Y, Z) - (n - 3)\eta(Y)\eta(Z) = \frac{n - 2}{n - 1} \tilde{S}(\phi Y, \phi Z) \] (46)

In view of (13) and (30), (46) becomes
\[\tilde{S}(Y, Z) - 2g(Y, Z) - (n - 3)\eta(Y)\eta(Z) = \frac{n - 2}{n - 1} \tilde{S}(Y, Z) - (n - 1)\eta(Y)\eta(Z) \]

which gives
\[S(Y, Z) = ag(Y, Z) + b\eta(Y)\eta(Z), \] (47)

where \(a = 2(n - 1) \) and \(b = -(n - 1) \). Thus we state the following theorem:

Theorem 4.2 A \(\phi \)-projectively flat Sasakian manifold \(M_n \) equipped with a semi-symmetric non-metric connection \(\tilde{\nabla} \) is a \(\eta \)-Einstein manifold.

5 Locally \(\phi \)-symmetric Sasakian manifold with respect to the semi-symmetric non-metric connection \(\tilde{\nabla} \)

Let \(M_n \) be an \(n \)-dimensional Sasakian manifold equipped with a semi-symmetric non-metric connection \(\tilde{\nabla} \). From (3), (5), (6), (10), (12) and (18), it follows that

\[
(\tilde{\nabla}_W \tilde{R})(X, Y)Z = (\tilde{\nabla}_W \tilde{R})(X, Y)Z + g(\phi W, \tilde{R}(X, Y)Z)\xi \\
+ g(\phi X, W) \{g(Y, Z)\xi - \eta(Z)Y\} \\
- g(\phi Y, W) \{g(X, Z)\xi - \eta(Z)X\} \\
+ g(\phi Z, W) \{\eta(Y)X - \eta(X)Y\}.
\] (48)

Taking covariant derivative of (29) with respect to the Levi-Civita connection \(\nabla \) along \(W \) and then using (29), we get

\[
(\nabla_W \tilde{R})(X, Y)Z = (\nabla_W \tilde{R})(X, Y)Z - g((\nabla_W \phi)(Y), Z)\phi X - g(\phi Y, Z)(\nabla_W \phi)(X) \\
+ g((\nabla_W \phi)(X), Z)\phi Y + g(\phi X, Z)(\nabla_W \phi)(Y) - (\nabla_W \eta)(Y)g(X, Z)\xi \\
- \eta(Y)g(X, Z)\nabla_W \xi + (\nabla_W \eta)(X)g(Y, Z)\xi + \eta(X)g(Y, Z)\nabla_W \xi.
\] (49)
In consequence of (3), (5), (8), (9) and (11), (49) becomes

\[(\nabla_w \tilde{\nabla})(X, Y)Z = (\nabla_w R)(X, Y)Z - \eta(Z)g(Y, W)\phi X + \eta(Y)g(W, Z)\phi X - g(\phi Y, Z)g(W, X)\xi + \eta(X)g(\phi Y, Z)W + \eta(Z)g(X, W)\phi Y - \eta(X)g(W, Z)\phi Y + g(\phi X, Z)g(Y, W)\xi - \eta(Y)g(\phi X, Z)W - g(\phi Y, W)g(X, Z)\xi - \eta(Y)g(X, Z)\phi W + g(\phi X, W)g(Y, Z)\xi + \eta(X)g(Y, Z)\phi W. \tag{50}\]

From (48) and (50), it follows that

\[(\tilde{\nabla}_w \tilde{\nabla})(X, Y)Z = (\nabla_w R)(X, Y)Z - \eta(Z)g(Y, W)\phi X + \eta(Y)g(W, Z)\phi X - g(\phi Y, Z)g(W, X)\xi + \eta(X)g(\phi Y, Z)W + \eta(Z)g(X, W)\phi Y - \eta(X)g(W, Z)\phi Y + g(\phi X, Z)g(Y, W)\xi - \eta(Y)g(\phi X, Z)W - g(\phi Y, W)g(X, Z)\xi - \eta(Y)g(X, Z)\phi W + g(\phi X, W)g(Y, Z)\xi + \eta(X)g(Y, Z)\phi W + g(\phi X, W)\{g(Y, Z)\xi - \eta(Z)Y\} - g(\phi Y, W)\{g(X, Z)\xi - \eta(Z)X\}. \tag{51}\]

Operating \(\phi^2\) on either sides of (51) and using (2) and (3), we get

\[\phi^2(\tilde{\nabla}_w \tilde{\nabla})(X, Y)Z = \phi^2(\nabla_w R)(X, Y)Z + \eta(Z)g(Y, W)\phi X - \eta(Y)g(W, Z)\phi X - \eta(X)g(\phi Y, Z)W + \eta(X)g(\phi Y, Z)\eta(W)\xi - \eta(Z)g(X, W)\phi Y + \eta(X)g(W, Z)\phi Y + \eta(Y)g(\phi X, Z)W - \eta(Y)g(\phi X, Z)\eta(W)\xi - \eta(X)g(Y, Z)\phi W - g(\phi Z, W)\{\eta(Y)X - \eta(X)Y\} + g(\phi X, W)\{\eta(Z)Y - \eta(Z)\eta(Y)\xi\} + \eta(Y)g(X, Z)\phi W - g(\phi Y, W)\{\eta(Z)X - \eta(Z)\eta(X)\xi\}. \tag{52}\]

If we take the vector fields \(X, Y, Z\) and \(W\) orthogonal to \(\xi\), then (52) reduces to

\[\phi^2(\tilde{\nabla}_w \tilde{\nabla})(X, Y)Z = \phi^2(\nabla_w R)(X, Y)Z.\]

Thus we can state the following theorem:

Theorem 5.1 The necessary and sufficient condition for a Sasakian manifold to be locally \(\phi\)-symmetric with respect to the Levi-Civita connection \(\nabla\) is that it is locally \(\phi\)-symmetric with respect to the semi-symmetric non-metric connection \(\tilde{\nabla}\).

References

Received: August 5, 2013