On Intuitionistic Q-Fuzzy K-Ideals of Semiring

S. Lekkoksung
Rajamangala University of Technology Isan
Khon Kaen Campus, Thailand
Lekkoksung_somsak@hotmail.com

Abstract
In this paper, we apply the concept of intuitionistic Q-fuzzy set to semirings. We introduced the notion of anti Q-fuzzy right ideal, anti Q-fuzzy right k-ideal and intuitionistic Q-fuzzy right k-ideal in semiring. We investigate the their properties and connections with right k-ideal, Q-fuzzy right k-ideal, anti Q-fuzzy right k-ideal.

Mathematics Subject Classification: 04A72, 06F05, 20M12

Keywords: Q-fuzzy right ideal, anti Q-fuzzy right ideal, intuitionistic Q-fuzzy right ideal, Q-fuzzy right k-ideal, anti Q-fuzzy right k-ideal, intuitionistic Q-fuzzy right k-ideal

1 Introduction

Henriksen defined in Henriksen (1958) a more restricted class of ideals in semiring, which is called the class of k-ideals, with the property that if the semiring R is a ring then a complex in R is a k-ideal if and only if it is a ring ideal.

Atanassov introduced intuitionistic fuzzy set which constitute a generalization of the notion of fuzzy sets [1],[2]. The degree of membership of an element in a given set, while intuitionistic fuzzy sets give both a degree of membership and a degree of non-membership. M. Akram and W.A. Dudek introduced the notion of intuitionistic fuzzy left k-ideal in semiring [4]. K.H. Kim[3] studied intuitionistic Q-fuzzy ideals. In this paper, we apply the concept of intuitionistic Q-fuzzy set to semirings. We introduced the notion of anti Q-fuzzy right ideal, anti Q-fuzzy right k-ideal and intuitionistic Q-fuzzy right k-ideal in semiring. We investigate the their properties and connections with right k-ideal, Q-fuzzy right k-ideal, anti Q-fuzzy right k-ideal.

2 Preliminary Notes

Definition 2.1 A nonempty set R together with two binary operations $’+$’ and $’.’$ is said to be a semiring if
1) \((R; +)\) is a commutative semigroup,
2) \((R; \cdot)\) is a semigroup,
3) \(a(b + c) = ab + ac\) and \((a + b)c = ac + bc\) for all \(a, b, c \in R\).

By a subsemiring of \(R\) we mean a nonempty subset \(S\) of \(R\) such that \(S\) is closed under the operation of addition and multiplication in \(R\). A subsemiring \(R\) is called an right (left) ideal of \(R\) if for all \(r \in R, x \in I, xr \in I (rx \in I)\). A subsemiring \(I\) of a semiring \(S\) is called an ideal of \(R\) if it is both left and right ideal.

A mapping \(\mu : M \times Q \to [0, 1]\), where \(M, Q\) are arbitrary non-empty sets, is called a \(Q\)-fuzzy set of \(M\). An upper level set of a \(Q\)-fuzzy set \(\mu\) denoted by \(U(\mu; t) = \{x \in M \mid \mu(x, q) \geq t, \forall q \in Q\}\) and a lower level set of a \(Q\)-fuzzy set \(\mu\) denoted by \(L(\mu; t) = \{x \in M \mid \mu(x, q) \leq t, \forall q \in Q\}\), for all \(t \in [0, 1]\).

An intuitionistic \(Q\)-fuzzy set (IQFS for short) defined on non-empty sets \(M\) and \(Q\) as objects of the form

\[
A = \{< x, q, \mu_A(x, q), \lambda_A(x, q) > \mid x \in R, q \in Q\},
\]

where the function \(\mu_A : M \times Q \to [0, 1]\) and \(\lambda_A : M \times Q \to [0, 1]\) denote the degree of membership (namely \(\mu_A(x, q)\)) and the degree of non-membership (namely \(\lambda_A(x, q)\)) for each element \(x \in M, q \in Q\) to the set \(A\), respectively, and

\[
0 \leq \mu_A(x, q) + \lambda_A(x, q) \leq 1
\]

for each \(x \in M, q \in Q\). Obviously, every \(Q\)-fuzzy set \(\mu\) we can have

\[
A = \{< x, q, \mu_A(x, q), \lambda_A(x, q) > \mid x \in M, q \in Q\}.
\]

For the sake of simplicity, we shall use the symbol \(A = (\mu_A, \lambda_A)\) for the intuitionistic \(Q\)-fuzzy set \(A = \{< x, q, \mu_A(x, q), \lambda_A(x, q) > \mid x \in R, q \in Q\}\). Obviously for an IQFS \(A = (\mu_A, \lambda_A)\) in \(M\), when \(\lambda_A(x, q) = 1 - \mu_A(x, q)\), for every \(x \in M, q \in Q\), the IQFS \(A\) is a \(Q\)-fuzzy set.

3 Main Results

Definition 3.1 A \(Q\)-fuzzy set \(\mu\) of a semiring \(R\) is said to be a \(Q\)-fuzzy right (left) ideal if

1) \(\mu(x + y, q) \geq \mu(x, q) \wedge \mu(y, q)\).
2) \(\mu(xy, q) \geq \mu(x, q)(\mu(xy, q) \geq \mu(y, q))\)

for all \(x, y \in R, q \in Q\).

Definition 3.2 A \(Q\)-fuzzy set \(\mu\) of a semiring \(R\) is said to be an anti \(Q\)-fuzzy right (left) ideal if
1) \(\mu(x + y, q) \leq \mu(x, q) \wedge \mu(y, q) \).
2) \(\mu(xy, q) \leq \mu(x, q)(\mu(xy, q) \leq \mu(y, q)) \)
for all \(x, y \in R, q \in Q \).

Definition 3.3 An intuitionistic \(Q \)-fuzzy set \(A = \{< x, q, \mu_A(x, q), \lambda_A(x, q) > | x \in R, q \in Q \} \) is called an intuitionistic \(Q \)-fuzzy right (left) ideal of \(R \) if
1) \(\mu_A(x + y, q) \geq \mu_A(x, q) \wedge \mu_A(y, q) \).
2) \(\mu_A(xy, q) \geq \mu_A(x, q)(\mu_A(xy, q) \geq \mu_A(y, q)) \).
3) \(\lambda_A(x + y, q) \leq \lambda_A(x, q) \vee \lambda_A(y, q) \).
4) \(\lambda_A(xy, q) \leq \lambda_A(x, q)(\lambda_A(xy, q) \leq \lambda_A(y, q)) \),
for all \(x, y \in R, q \in Q \).

Theorem 3.4 If a \(Q \)-fuzzy set \(\mu \) is a \(Q \)-fuzzy right (left) ideal of a semiring \(R \) if and only if \(1 - \mu \) is an anti-\(Q \)-fuzzy right (left) ideal in a semiring \(R \).

Proof. Let \(\mu \) be a \(Q \)-fuzzy right ideal in a semiring \(R \). Let \(x, y \in R, q \in Q \). Then \(\mu(x + y, q) \geq \mu(x, q) \wedge \mu(y, q) \) implies \(-\mu(x + y, q) \leq -(\mu(x, q) \wedge \mu(y, q)) \). Thus \(-\mu(x + y, q) \leq -(\mu(x, q) \vee -\mu(y, q)) \). Then \(1 - \mu(x + y, q) \leq 1 - \mu(x, q) \vee 1 - \mu(y, q) \). Therefore \((1 - \mu)(x + y, q) \leq (1 - \mu)(x, q) \vee (1 - \mu)(y, q) \).
Similarly, we can prove \((1 - \mu)(xy, q) \leq \mu(x, q) \). Hence \(1 - \mu \) is anti-\(Q \)-fuzzy right ideal in semiring \(R \). Conversely, we can prove that \(\mu \) is a \(Q \)-fuzzy right ideal in similar manner.

Lemma 3.5 A \(Q \)-fuzzy set \(\mu \) in a semiring \(R \) is a \(Q \)-fuzzy right (left) ideal if and only if \(U(\mu, t) \) is a right (left) ideal of a semiring \(R \) for all \(t \in [0, 1] \) whenever nonempty.

Definition 3.6 A right (left) ideal \(I \) is called right (left) \(k \)-ideal of a semiring \(R \) if \(x + y, y \in I \) implies \(x \in I \).

Definition 3.7 A \(Q \)-fuzzy right (left) ideal \(\mu \) of a semiring \(R \) is called \(Q \)-fuzzy right (left) \(k \)-ideal if for all \(x, y \in R, q \in Q \),
\[
\mu(x, q) \geq \mu(x + y, q) \wedge \mu(y, q)
\]

Definition 3.8 An anti-\(Q \)-fuzzy right (left) ideal \(\mu \) of a semiring \(R \) is called anti-\(Q \)-fuzzy right (left) \(k \)-ideal if for all \(x, y \in R, q \in Q \),
\[
\lambda(x, q) \leq \lambda(x + y, q) \vee \lambda(y, q)
\]

Definition 3.9 An intuitionistic \(Q \)-fuzzy right (left) ideal \(A = \{< x, q, \mu_A(x, q), \lambda_A(x, q) > | x \in R, q \in Q \} \) in \(R \) is said to be an intuitionistic \(Q \)-fuzzy right (left) \(k \)-ideal if
1) \(\mu_A(x, q) \geq \mu_A(x + y, q) \wedge \mu_A(y, q) \)
2) \(\lambda_A(x, q) \leq \lambda_A(x + y, q) \vee \lambda_A(y, q) \)
for all \(x, y \in R, q \in Q \).
Theorem 3.10 If a Q-fuzzy set μ is a Q-fuzzy right k-ideal in a semiring R if and only if $1 - \mu$ is an anti Q-fuzzy right (left) k-ideal in a semiring R.

Proof. Let μ be a Q-fuzzy right k-ideal in a semiring R. Let $x, y \in R, q \in Q$. Then $\mu(x, q) \geq \mu(x + y, q) \cap \mu(y, q)$ implies $-\mu(x, q) \leq -(\mu(x + y, q) \cap \mu(y, q))$. Thus $-\mu(x, q) \leq -\mu(x + y, q) \lor -\mu(y, q)$. Therefore $1 - \mu(x, q) \leq 1 - \mu(x + y, q) \lor 1 - \mu(y, q))$. Hence $(1 - \mu)(x, q) \leq (1 - \mu)(x + y, q) \lor (1 - \mu)(y, q)$. By Theorem 3.4, $1 - \mu$ is an anti Q-fuzzy right k-ideal. By similar argument, we can prove the converse part.

Lemma 3.11 A Q-fuzzy set μ of a semiring R is a Q-fuzzy right k-ideal if and only if $U(\mu; t)$ is a right k-ideal in a semiring R for all $t \in [0, 1]$ whenever nonempty.

Proof. Let μ be a Q-fuzzy right k-ideal of a semiring R. Let $t \in [0, 1]$. If there exists $x, y \in R, q \in Q$ such that $x + y, y \in U(\mu; t)$ and $x \notin U(\mu; t)$, then $\mu(x + y, q) \land \mu(y, q) \geq t > \mu(x, q)$, is a contradiction. Therefore by Lemma 3.5, $U(\mu; t)$ is a right k-ideal of R.

Conversely, if there exists $x, y \in R, q \in Q$ such that $\mu(x, q) < \mu(x + y, q) \land \mu(y, q)$, then $x + y, y \in U(\mu; t)$ and $x \notin U(\mu; t)$, where $t = \mu(x + y, q) \land \mu(y, q)$ which is a contradiction. Therefore by Lemma 3.5, μ is a Q-fuzzy right k-ideal of R.

Corollary 3.12 A right (left) ideal I in R is a right (left) k-ideal if and only if χ_I is a Q-fuzzy right (left) k-ideal of a semiring R.

Lemma 3.13 A Q-fuzzy set λ of a semiring R is an anti Q-fuzzy right k-ideal if and only if $L(\lambda; t)$ is a right k-ideal in a semiring R for all $t \in [0, 1]$ whenever nonempty.

Proof. Let λ be an anti Q-fuzzy right k-ideal of a semiring R. Let $t \in [0, 1]$. If there exists $x, y \in R, q \in Q$ such that $x + y, y \in L(\lambda; t)$ and $x \notin L(\lambda; t)$, then $\lambda(x + y, q) \lor \lambda(y, q) \leq t < \lambda(x, q)$, is a contradiction. Therefore by Lemma 3.5, $L(\lambda; t)$ is a right k-ideal in a semiring R.

Conversely, if there exists $x, y \in R, q \in Q$ such that $\lambda(x, q) > \lambda(x + y, q) \lor \lambda(y, q)$, then $x + y, y \in L(\lambda; t)$ and $x \notin L(\lambda; t)$, where $t = \lambda(x + y, q) \lor \lambda(y, q)$ which is a contradiction. Therefore by Lemma 3.5, λ is an anti Q-fuzzy right k-ideal of a semiring R.

Theorem 3.14 An intuitionistic Q-fuzzy set $A = \{< x, q, \mu_A(x, q), \lambda_A(x, q) > | x \in R, q \in Q \}$ in R is an intuitionistic Q-fuzzy right k-ideal in R if and only if $U(\mu_A; t)$ is a right k-ideal in a semiring R and $L(\lambda_A; t)$ is a right k-ideal in a semiring R for all $t \in R$ whenever nonempty.

Proof. The proof follows from Lemma 3.5 and Lemma 3.11.
Corollary 3.15 An intuitionistic Q-fuzzy set $A = \{ < x, q, \mu_A(x, q), \lambda_A(x, q) > | x \in R, q \in Q \}$ in R is an intuitionistic Q-fuzzy right k-ideal in R if and only if μ_A is a Q-fuzzy right k-ideal in semiring R and λ_A is an anti Q-fuzzy right k-ideal in a semiring R.

Proof. The proof follows from Theorem 3.14 and Lemmas 3.11 and 3.13.

Corollary 3.16 An intuitionistic Q-fuzzy set $A = \{ < x, q, \mu_A(x, q), (1 - \mu_A)(x, q) > | x \in R, q \in Q \}$ in R is an intuitionistic Q-fuzzy right k-ideal in R if and only if μ_A is a Q-fuzzy right k-ideal in semiring R.

Proof. The proof follows from Theorem 3.14 and Corollary 3.15.

Corollary 3.17 An intuitionistic Q-fuzzy set $A = \{ < x, q, (1 - \lambda_A)(x, q), \lambda_A(x, q) > | x \in R, q \in Q \}$ in R is an intuitionistic Q-fuzzy right k-ideal in R if and only if λ_A is an anti Q-fuzzy right k-ideal in a semiring R.

Proof. The proof follows from Theorem 3.14 and Corollary 3.15.

References

Received: August, 2011