On Slightly b-Continuous Functions

Uday Shankar Chakraborty

Department of Mathematics
Assam University, Silchar
udayhkd@gmail.com

Abstract

The aim of this paper is to introduce a new set of properties of slightly b-continuous functions. Also the relations of slightly b-continuous functions with other weak forms of b-continuous functions have been investigated.

Mathematics Subject Classification: 54C10

Keywords: Slightly b-continuity, almost b-continuity, weakly b-continuity, faintly b-continuity

1 Introduction

Andrijevic [1] introduced the notion of b-open sets in a topological space and obtained their various properties. El-Etik [2] introduced the same concept in the name of γ-open sets. El-Etik also introduced the concept of γ-continuous (b-continuous) functions with the aid of b-open sets. In 2004, Ekici and Caldas [3] introduced the notion of slightly γ-continuity (slightly b-continuity) which is a weakened form of b-continuity. In their paper, the authors have studied basic properties and preservation theorems of slightly b-continuous functions. The relationships of slightly b-continuity with other weaker forms of continuity have also been studied. In the present paper, a new set of conditions which characterize slightly b-continuous functions have been investigated. Also, the relation of slightly b-continuity with other weaker forms of b-continuity, viz. weakly b-continuity [4], somewhat b-continuity [5], almost b-continuity [6] and faintly b-continuity [7] have been studied.

2 Preliminary Notes

Throughout the present paper, X and Y are always topological spaces. Let A be a subset of X. The interior and closure of a set are denoted by $\text{int}(A)$
and cl(A), respectively. A subset of a topological space X is said to be b-open \([1](\gamma$-open \([2])$ if $A \subset \text{int}(\text{cl}(A)) \cup \text{cl}(\text{int}(A))$. The complement of a b-open set is called b-closed \([1]$. The intersection of all b-closed sets of X containing A is called the b-closure \([1]$ of A and is denoted by $b\text{cl}(A)$. A subset B of X is said to be a b-neighbourhood \([1]$ of a point $x \in X$ if there exists a b-open set containing x and is contained in A. A subset A of X is said to be δ^*-open \([8]$ if for each $x \in A$ there exists a clopen subset G of X such that $x \in G \subset A$. A subset B of X is said to be δ-closed \([8]$ if $X \setminus B$ is δ-open. The intersection of all δ^*-closed sets of X containing A is called the δ^*-closure of A and is denoted by $\delta^*\text{cl}(A)$. A subset A of X is said to be θ-open \([9]$ if every point of A has an open neighbourhood whose closure is contained in A. A subset A of X is said to be regular open \([10]$ if $A = \text{int}(\text{cl}(A))$. The family of all b-open (resp. b-closed, clopen, δ^*-open, δ-closed, regular open) sets in X is denoted by $BO(X)$ (resp. $BC(X)$, $CO(X)$, $BCO(X)$, $\delta^*O(X)$, $\delta^*C(X)$, $RO(X)$).

Definition 2.1 A function $f : X \rightarrow Y$ is said to be almost b-continuous (briefly a.b.c.) \([6]$ if for each $x \in X$ and each $V \in RO(Y)$ containing $f(x)$, there exists $U \in BO(X)$ containing x such that $f(U) \subset V$.

Definition 2.2 A function $f : X \rightarrow Y$ is said to be weakly b-continuous (briefly w.b.c.) \([4]$ if for each $x \in X$ and each open set V in Y containing $f(x)$, there exists $U \in BO(X)$ containing x such that $f(U) \subset \text{cl}(V)$.

Definition 2.3 A function $f : X \rightarrow Y$ is said to be somewhat b-continuous (briefly s.w.b.c.) \([5]$ if for each open set V in Y and $f^{-1}(V) \neq \emptyset$ there exists $U \in BO(X)$ such $U \neq \emptyset$ and $U \subset f^{-1}(V)$.

Definition 2.4 A function $f : X \rightarrow Y$ is said to be faintly b-continuous (briefly f.b.c.) \([7]$ if for each $x \in X$ and each θ-open set V in Y containing $f(x)$, there exists $U \in BO(X)$ containing x such that $f(U) \subset V$.

Definition 2.5 A function $f : X \rightarrow Y$ is called slightly γ-continuous \([3]$ if for each $x \in X$ and each $V \in CO(X)$ containing $f(x)$, there exists a $U \in BO(X)$ containing x such that $f(U) \subset V$.

In the present paper a slightly γ-continuous function will be termed as a slightly b-continuous function (briefly s.b.c.).

Theorem 2.6 For a function $f : X \rightarrow Y$ the following are equivalent\([3]\):

(a) f is s.b.c.;

(b) $f^{-1}(V) \in BO(X)$ for every $V \in CO(X)$;

(c) $f^{-1}(V) \in BC(X)$ for every $V \in CO(X)$;

(d) $f^{-1}(V) \in BCO(X)$ for every $V \in CO(X)$.
3 Main Results

The following theorem gives a new set of conditions which characterize slightly b-continuous functions.

Theorem 3.1 For a function $f : X \rightarrow Y$ the following are equivalent:

(a) f is s.b.c.;

(b) $f^{-1}(V) \in BO(X)$ for every $\delta^*\text{-open } V$ in Y;

(c) $f^{-1}(V) \in BC(X)$ for every $\delta^*\text{-closed } V$ in Y;

(d) $f(bcl(A)) \subset \delta^*\text{-cl}(f(A))$ for every subset A of X;

(e) $bcl(f^{-1}(B)) \subset f^{-1}(\delta^*\text{-cl}(B))$ for every subset B of Y.

Proof. (a)\Rightarrow(b): Let V be a δ^*-open set in Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$. The δ^*-openness of V gives a $U \in CO(Y)$ such that $f(x) \in U \subset V$. This implies that $x \in f^{-1}(U) \subset f^{-1}(V)$. Since f is s.b.c., from Theorem 2.5., we have, $f^{-1}(U) \in BO(X)$. Hence $f^{-1}(V)$ is a b-neighbourhood of each of its points. Consequently, $f^{-1}(V) \in BO(X)$.

(b)\Rightarrow(c): It is obvious from the fact that the complement of a δ^*-closed set is δ^*-open.

(c)\Rightarrow(d): Let A be a subset of X. We have, $\delta^*\text{-cl}(f(A)) = \cap\{F : f(A) \subset F, F \in \delta^*C(Y)\}$ is a δ^*-closed set in Y. Thus $A \subset f^{-1}(\delta^*\text{-cl}(f(A))) = \cap\{f^{-1}(F) : f(A) \subset F, F \in \delta^*C(Y)\} \in BO(X)$. Thus, we obtain $bcl(A) \subset f^{-1}(\delta^*\text{-cl}(f(A)))$. Hence, $f(bcl(A)) \subset \delta^*\text{-cl}(f(A))$.

(d)\Rightarrow(e): Let B be a subset of Y. We have $f(bcl(f^{-1}(B))) \subset \delta^*\text{-cl}(f(f^{-1}(B))) \subset \delta^*\text{-cl}(B)$ and hence, we obtain, $bcl(f^{-1}(B)) \subset f^{-1}(\delta^*\text{-cl}(B))$.

(e)\Rightarrow(a): Let V be a clopen set in Y. Then V is δ^*-closed in Y. Thus $bcl(f^{-1}(B)) \subset f^{-1}(\delta^*\text{-cl}(B)) = f^{-1}(B)$. Therefore, $f^{-1}(B)$ is closed. Hence, by Theorem 2.6, we obtain f is s.b.c.

Theorem 3.2 If a function $f : X \rightarrow Y$ is w.b.c. then, f is s.b.c.

Proof. Let $x \in X$ and let V be a clopen set in Y containing $f(x)$. Therefore, by weakly b-continuity of f, there exists $U \in BO(X)$ containing x such that $f(U) \subset cl(V)$. Since, $x \in X$ is arbitrary, hence, f is s.b.c.

Remark 3.3 The converse of the above result is, however, far from true as shown by the following example.
Example 3.4 Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$, $\sigma = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$. Then the identity function $i : (X, \tau) \to (Y, \sigma)$ is s.b.c. but not w.b.c. at $b \in X$.

Remark 3.5 From definition, it is clear that every a.b.c. is w.b.c. and hence s.b.c. The converse is clearly false as shown by Example 3.4.

Definition 3.6 A space X is said to be extremally disconnected [10] if closure of every open set is open in X.

Theorem 3.7 If a function $f : X \to Y$ is f.b.c. then, f is s.b.c.

Proof. The result is obvious from the fact that every clopen set is θ-open.

Remark 3.8 The converse of the above result is however, in general, not true as shown by the following example.

Example 3.9 Let $\tau = \{G \subset \mathbb{R} : 0 \in G\} \cup \{\emptyset\}$ and let σ be the usual topology on \mathbb{R}. Then the identity function $i : (\mathbb{R}, \tau) \to (\mathbb{R}, \sigma)$ is s.b.c. but not f.b.c. at all points of \mathbb{R} except 0.

Theorem 3.10 A s.b.c. $f : X \to Y$ is f.b.c. if Y is extremally disconnected.

Proof. Let $x \in X$ and let V be a θ-open set in Y containing $f(x)$. Thus there exists an open set W such that $f(x) \in \text{cl}(W) \subset V$. By extremally disconnectedness of Y, $\text{cl}(W)$ is open. Thus, $\text{cl}(W) \in CO(Y)$. Since, f is s.b.c., therefore, there exists a b-open set U containing x such that $f(U) \subset \text{cl}(W) \subset V$. Since, $x \in X$ is arbitrary, therefore, f is f.b.c.

Thus we have

Theorem 3.11 Let $f : X \to Y$ be a function, where, Y is extremally disconnected. Then f is f.b.c. if and only if f is s.b.c.

Proof. It can be directly obtained by using Theorem 3.7 and Theorem 3.10.

Remark 3.12 Somewhat b-continuity and slightly b-continuity are independent of each other as shown by

Example 3.13 The function defined in Example 3.9 is s.b.c. but not sw.b.c. Again let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$, $\sigma = \{\emptyset, Y, \{a\}, \{b, c\}\}$. Then the identity function $i : (X, \tau) \to (Y, \sigma)$ is sw.b.c. but not s.b.c.

Acknowledgements. The author is thankful to Prof. Paritosh Bhattacharyya (Retd.), Department of Mathematics, Kalyani University, West Bengal, India for his valuable suggestions.
On slightly b-continuous functions

References

Received: September, 2011