Property for Graph of Some Commutative - Transitive Finite Rings

A. Bakhtvar and R. Safakish

Department of mathematics, Faculty of Science
University bu-Ali sina Hamadan, Iran
safakish@basu.ac.ir

Abstract

The main topic of this paper is to describe the structure of some graph commutative-transitive finite rings. It is shown that every such ring is a direct sum of an indecomposable noncommutative ring of prime power order, and a commutative ring. If for each $a, b, c \in R \setminus Z(R)$, $ab = ba$ and $bc = cb$ imply $ac = ca$, then the ring R is said to be commutative-transitive. In this paper, we present graph of commutative-transitive rings. We show that a ring R is commutative-transitive iff its commutative graph $\mu(R)$ is a union of complete graphs and present property for which the ring $M_n(R)$ is not commutative-transitive.

Mathematics Subject Classification: 16P10, 16U80, 16L30, 16N20

Keywords: Commutative-transitive ring, graph, finite rings, centralizer

1 Introduction

Definition 1.1 The ring R is said to be commutative-transitive if for each $a, b, c \in R \setminus Z(R)$, $ab = ba$ and $bc = cb$ imply $ac = ca$ [1].

Definition 1.2 Let R be a ring. Commutative graph $\mu(R)$ as set of vertices with non central elements is a ring the edges of which connect vertices $a \leftrightarrow b$ iff $a = b$ and distinct vertices a, b in $\mu(R)$ adjacent iff $ab = ba$.

Definition 1.3 If R is a ring and $\sigma : R \rightarrow R$ is an endomorphism, let $R[x; \sigma]$ denote the ring of polynomials over R that is, all formal polynomials in x with coefficients from R with multiplication defined by $xr = \sigma(r)x$. [4]
Definition 1.4 Let G be a group and R a ring. Then; RG is defined as

\[RG = \{ \sum_{g \in G} r_g g \mid r_g \in R \} \]

in which \(r_g = 0 \), except for some finite numbers. In RG, addition and multiplication are defined naturally and distributedly, respectively. RG is called a group ring on \(R \) [3].

Theorem 1.5 If \(R \) is a non-commutative ring with identity of order \(p^4 \), in which \(p \) is a prime number, then \(R \) is commutative-transitive.[1, Theorem 1-6]

Theorem 1.6 Pieress composition Theorem. Let \(e \) be idempotent in \(R \) ring. Then \(R = eRe \oplus eR(1 - e) \oplus (1 - e)Re \oplus (1 - e)R(1 - e) \). [3, page 318]

Theorem 1.7 Artin-veederborn theorem. Let \(R \) be any left semisimple ring. Then,

\[R \simeq M_{n_1}(D_1) \times \cdots \times M_{n_k}(D_k), \]

for suitable division rings \(D_1, \ldots, D_k \) and positive integers \(n_1, \ldots, n_k \). [3, page 35]

Theorem 1.8 Let \(F \) be a field and a nonevidend endomorphism of \(F \). Then \(R = \frac{F[X, \sigma]}{(x^2)} \) is commutative-transitive.[1, 2-2]

Theorem 1.9 Let \(R \) be a left artinian ring and \(n \in \mathbb{N} \), and \(F \) is a field such that \(\frac{R}{J(R)} \simeq M_n(F) \). Thus, local ring \(S \) exist such that \(R \simeq M_n(S) \).

2 The graph of some Commutative-transitive finite rings

Theorem 2.1 The ring \(R \) is commutative-transitive iff commutative graph \(\mu(R) \) is a union of complete graphs.

Proof. First, we show the following conditions are equivalent for ring \(R \):

a) \(R \) is commutative- transitive.

b) For each \(x, y \in R \setminus Z(R) \), if \(xy = yx \), then \(C(x) = C(y) \).

c) The centralizers of all non central elements of \(R \) are commutative.

\((a \rightarrow b)\) take \(x, y \in R \setminus Z(R) \) such that \(xy = yx \). If \(a \in C(x) \), then \(ax = xa \). Since \(xy = yx \) and \(R \) is commutative - transitive, \(ay = ya \). Then \(a \in C(y) \), resulting in the fact \(C(x) \subseteq C(y) \). Symmetrically \(C(y) \subseteq C(x) \). Then, \(C(x) = C(y) \).

\((b \rightarrow c)\) Suppose that \(x \in R \setminus Z(R) \). We show that if \(y, z \in C(x) \) then \(yz = zy \). If \(x \) and \(y \) are central, together they commutative. Then, take \(y, z \notin Z(R) \).
Since \(y, z \in C(x) \) then \(xy = yx \) and \(xz = zx \). So by condition (b) \(C(x) = C(y) \) and \(C(x) = C(z) \). Therefore, \(C(y) = C(z) \) and \(yz = yz \). \((c \to a)\) Let \(x, y, z \in R \setminus Z(R) \) such that \(xy = yx \) and \(yz = zy \) then, \(x, z \in C(y) \). By (c), \(C(y) \) is commutative, so \(xz = zx \).

Proposition 2.2 The commutative graph of \(UT_2(F) \) has \(|F| + 1 \) unconected elements.

proof: If we sketch diagram of graph, the proof is completed.

\[
R = \left\{ \begin{bmatrix} a & b \\ 0 & a^2 \end{bmatrix} \mid a, b \in F_4 \right\},
\]

Example 2.3 Let the following rings have 16 elements.

\[
S = \left\{ \begin{bmatrix} a & b & c \\ 0 & a & 0 \\ 0 & 0 & d \end{bmatrix} \mid a, b, c, d \in F_2 \right\}.
\]

Therefore, based on the above theorem, they are commutative-transitive and the commutative graph of \(R \) is the union of one \(K_6 \) graph and four \(K_2 \) graphs and the commutative graph of \(S \) is the union of three \(K_4 \) graphs.

Note 1. We have a single non commutative ring of \(p^3 \) order with identity of the following ring

\[
R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in Z_2 \right\}.
\]

That is also commutative-transitive [2]

Example 2.4 Let \(F \) be a field and \(A = F\langle x_1, x_2, y_1, y_2 \rangle \), \(F \)-algebra generated by \(x_1, x_2, y_1 \) and \(y_4 \) such that \(x_i x_j = x_j x_i \) and \(y_i y_j = y_j y_i \) for \(i, j = 1, 2 \). \(x_i y_j - y_j x_i = 0 \) and \(x_i y_j - y_j x_i = 1 \) for \(i \neq j \). Clearly, \(x_1, x_2 \) and \(y_2 \) are three noncenteral elements for which \(x_2, y_2 \in C(x_1) \), but \(x_2 y_2 \neq y_2 x_2 \). Then, \(A \) is not commutative-transitive.

Example 2.5 The ring

\[
R = \left\{ \begin{bmatrix} 0 & a & b & c \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{bmatrix} \mid a, b, c \in Z_2 \right\}.
\]

is commutative-transitive.

A graph transitive ring \(R \) is union of one graph \(K_3 \) and 4 graph \(K_1 \).
Theorem 2.6 Let R be ring with unity.

a) The ring $M_2(R)$ is commutative-transitive if and if R is transitive domain.

b) The ring $M_n(R)$ is not commutative-transitive for $n \geq 3$.

proof: a) take $x, y, z \in M_2(R) \setminus Z(M_2(R))$, such that $yz = zy$ and $xy = yx$. We show that $xz = zx$. Consider

$$x = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}, \quad y = \begin{bmatrix} y_1 & y_2 \\ y_3 & y_4 \end{bmatrix}, \quad z = \begin{bmatrix} z_1 & z_2 \\ z_3 & z_4 \end{bmatrix}.$$

Subtracting multiples of unit x, y, z, suppose that $x_1 = y_1 = z_1 = 0$. From relation $xy = yx$. It is, therefore,

$$x_2y_3 = y_2x_3 \quad (1)$$

$$x_2y_4 = y_2x_4 \quad (2)$$

$$x_4y_3 = y_3x_3 \quad (3)$$

and relation $yz = zy$. It is, therefore,

$$z_2y_3 = y_2z_3 \quad (4)$$

$$z_2y_4 = y_2z_4 \quad (5)$$

$$z_4y_3 = y_4z_3 \quad (6)$$

Two sides (1) of right multiply z_3, so $x_2y_3z_3 = y_2x_3z_3$. R is commutative and (4), then $x_2y_3z_3 = y_2x_3z_3 = x_3y_2z_3 = x_3z_2y_3$. Since R is domain, y is removed from two sides. Then

$$x_2z_3 = x_3z_2 \quad (7)$$

Two sides of (1) are right multiplied by z_3. So $x_2y_4z_3 = y_2x_4z_3$. R is commutative, then

$$x_2y_4z_3 = y_2x_4z_3 = y_2z_4z_3 = x_4z_3z_4 = z_4y_4x_4.$$

Since R is domain, y_4 is removed from two sides. Then

$$x_2z_4 = z_2x_4 \quad (8)$$

If two sides of (3) are right multiplied by z_3, with R being commutative and (6), we have

$$x_4y_3z_3 = y_4x_3z_3 = y_4z_3z_3 = z_4y_3x_3.$$

Since R is a domain, y_3 is removed from two sides. then

$$x_4z_3 = z_4x_3 \quad (9)$$
Therefore, it is followed from (7), (8) and (9) that $xz = zx$. So $M_2(R)$ is commutative-transitive.

We assume R has zero divisor. So, for $a, b \in R \setminus \{0\}$, we have $ab = 0$, which can imply

$$x = \begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \quad z = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Then $xy = yx$ and $yz = zy$, but $xz \neq zx$ with commutative-transitive ring $M_n(R)$ has a contradiction. Similarly, if for some $a, b \in R, ab \neq ba$, then,

$$x = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad z = \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$$

So $xy = yx$ and $yz = zy$, but $xz \neq zx$ which is in contradiction with commutative-transitive ring $M_n(R)$.

b) Take $x = E_{11}$, $y = E_{11} + E_{22}$ and $z = E_{21}$. Then, $x, y, z \in M_n(R) \setminus Z(M_n(R))$ and $yz = zy$ but $zx \neq zx$.

References

Received: August, 2012