Homomorphism in Intuitionistic Fuzzy

Subsemiring of a Semiring

V. Saravanan¹ and D. Sivakumar²

¹ Mathematics Section, FEAT, Annamalai University, Annamalai Nagar, India saravanan_aumaths@yahoo.com
² Mathematics Wing, DDE, Annamalai University, Annamalai Nagar, India sivakumar_aumaths@yahoo.com

Abstract. In this paper, we made an attempt to study the algebraic nature of intuitionistic fuzzy subsemiring of a semiring under homomorphism and anti-homomorphism.

Mathematics Subject Classification: 03F55, 06D72, 08A72

Keywords: fuzzy set, fuzzy subsemiring, intuitionistic fuzzy set, intuitionistic fuzzy subsemiring, level subset.

INTRODUCTION: There are many concepts of universal algebras generalizing an associative ring (R; +; .). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. An algebra (R; +, .) is said to be a semiring if (R; +) and (R; .) are semigroups satisfying a. (b+c) = a. b+a. c and (b+c) .a = b. a+c. a for all a, b and c in R. A semiring R is said to be additively commutative if a+b = b+a for all a, b in R. A semiring R may have an identity 1, defined by 1. a = a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. After the introduction of fuzzy sets by L.A. Zadeh [22], several researchers explored on the generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T. Atanassov [3,4], as a generalization of the notion of fuzzy set. The notion of fuzzy subnearrings and ideals was introduced by S. Abou Zaid [18]. In this paper, we introduce the some theorems in intuitionistic fuzzy subsemiring of a semiring under homomorphism and anti-homomorphism.

1. PRELIMINARIES:

1.1 Definition: Let X be a non-empty set. A **fuzzy subset A** of X is a function $A: X \rightarrow [0, 1]$.

1.2 Definition: Let R be a semiring. A fuzzy subset A of R is said to be a **fuzzy subsemiring (FSSR)** of R if it satisfies the following conditions:

- (i) $\mu_A(x + y) \ge \min{\{\mu_A(x), \mu_A(y)\}},$
- (ii) $\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\}$, for all x and y in R.

1.3 Definition [5]: An intuitionistic fuzzy subset (IFS) A in X is defined as an object of the form A ={ $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ }, where $\mu_A : X \rightarrow [0,1]$ and $\nu_A : X \rightarrow [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $0 \le \mu_A(x) + \nu_A(x) \le 1$.

1.1 Example: Let $X = \{a, b, c\}$ be a set. Then $A = \{\langle a, 0.52, 0.34 \rangle, \langle b, 0.14, 0.71 \rangle, \langle c, 0.25, 0.34 \rangle\}$ is an intuitionistic fuzzy subset of X.

1.4 Definition: Let R be a semiring. An intuitionistic fuzzy subset A of R is said to be an **intuitionistic fuzzy subsemiring** (**IFSSR**) of R if it satisfies the following conditions:

(i) $\mu_A(x + y) \ge \min{\{\mu_A(x), \mu_A(y)\}},$

(ii) $\mu_A(xy) \ge \min\{ \mu_A(x), \mu_A(y) \},\$

(iii) $v_A(x + y) \le \max\{v_A(x), v_A(y)\},\$

(iv) $v_A(xy) \le \max\{v_A(x), v_A(y)\}$, for all x and y in R.

1.5 Definition: Let $(R, +, \cdot)$ and $(R^{!}, +, \cdot)$ be any two semirings. Let $f : R \to R^{!}$ be any function and A be an intuitionistic fuzzy subsemiring in R, V be an intuitionistic fuzzy subsemiring in $f(R)=R^{!}$, defined by $\mu_{V}(y)=\sup_{x\in f^{-1}(y)}\mu_{A}(x)$ and

 $v_V(y) = \inf_{x \in f^{-1}(y)} v_A(x)$, for all x in R and y in R¹. Then A is called a preimage of V

under f and is denoted by $f^{-1}(V)$.

1.6 Definition: Let A be an intuitionistic fuzzy subset of X. For α , β in [0, 1], the level subset of A is the set $A_{(\alpha, \beta)} = \{ x \in X : \mu_A(x) \ge \alpha, \mu_A(x) \le \beta \}$.

2. PROPERTIES OF INTUITIONISTIC FUZZY SUBSEMIRING OF A SEMIRING R

2.1 Theorem: Let (R, +, .) and $(R^{1}, +, .)$ be any two semirings. The homomorphic image of an intuitionistic fuzzy subsemiring of R is an intuitionistic fuzzy subsemiring of R¹.

Proof: Let f: $R \to R^{1}$ be a homomorphism. Then f(x+y) = f(x) + f(y) and f(xy)=f(x) f(y), for all x and y in R. Let V=f(A), where A is an intuitionistic fuzzy subsemiring of R. Now, for f(x), f(y) in R^{1} , $\mu_{v}(f(x)+f(y)) \ge \mu_{A}(x+y) \ge \min\{\mu_{A}(x), \mu_{A}(y)\}$, which implies that $\mu_{v}(f(x)+f(y)) \ge \min\{\mu_{v}(f(x)), \mu_{v}(f(y))\}$. Again, $\mu_{v}(f(x)f(y)) \ge \mu_{A}(xy) \ge \min\{\mu_{A}(x), \mu_{A}(y)\}$, which implies that $\mu_{v}(f(x)+f(y)) \ge \min\{\mu_{v}(f(x)), \mu_{v}(f(x)f(y))\}$. Again, $\mu_{v}(f(x)), \mu_{v}(f(y))\}$. Now, for f(x), f(y) in $R^{1}, \nu_{v}(f(x) + f(y)) \le \nu_{A}(x+y) \le \max\{\nu_{A}(x), \nu_{A}(y)\}$, which implies that $\nu_{v}(f(x) + f(y)) \le \max\{\nu_{A}(x), \nu_{A}(y)\}$, Magain, $\nu_{v}(f(x)f(y)) \le \nu_{A}(xy) \le \max\{\nu_{A}(x), \nu_{A}(y)\}$, which implies that $\nu_{v}(f(x)), \nu_{v}(f(y))\}$. Again, $\nu_{v}(f(x)), (f(y)) \le \max\{\nu_{A}(x), \nu_{A}(y)\}$, which implies that $\nu_{v}(f(x)f(y)) \le \max\{\nu_{A}(x), \nu_{A}(y)\}$, which implies that $\nu_{v}(f(x)f(y)) \le \max\{\nu_{v}(f(x)), \nu_{v}(f(y))\}$. Hence V is an intuitionistic fuzzy subsemiring of R¹.

2.2 Theorem: Let (R, +, .) and $(R^1, +, .)$ be any two semirings. The homomorphic preimage of an intuitionistic fuzzy subsemiring of R^1 is a intuitionistic fuzzy subsemiring of R.

Proof: Let $f : R \to R^{\dagger}$ be a homomorphism. Then, f(x+y) = f(x) + f(y) and f(xy) = f(x) f(y), for all x and y in R. Let V = f(A), where V is an intuitionistic fuzzy subsemiring of R^{\dagger} . Let x and y in R. Then, $\mu_A(x+y) = \mu_v(f(x)+f(y)) \ge \min \{\mu_v(f(x)), \mu_v(f(y))\} = \min \{\mu_A(x), \mu_A(y)\}$, which implies that $\mu_A(x + y) \ge \min \{\mu_A(x), \mu_A(y)\}$. Again, $\mu_A(xy) = \mu_v(f(x)f(y)) \ge \min \{\mu_v(f(x)), \mu_v(f(y))\} = \min \{\mu_A(x), \mu_A(y)\}$, which implies that $\mu_A(xy) \ge \min \{\mu_A(x), \mu_A(y)\}$. Then, $v_A(x+y) = v_v(f(x + y)) = v_v(f(x) + f(y)) \le \max \{v_v(f(x)), v_v(f(y))\} = \max \{v_A(x), v_A(y)\}$, which implies that $v_A(x+y) \le \max \{v_A(x), v_A(y)\}$. Again, $v_A(xy) = v_v(f(x)f(y)) \le \max \{v_A(x), v_A(y)\}$. Again, $v_A(xy) = v_v(f(x)f(y)) \le \max \{v_A(x), v_A(y)\}$. Again, $v_A(xy) = v_v(f(x)f(y)) \le \max \{v_A(x), v_A(y)\}$. Musch implies that $v_A(x+y) \le \max \{v_A(x), v_A(y)\}$. Musch implies that $v_A(x), v_A(y)$. Hence A is an intuitionistic fuzzy subsemiring of R.

2.3 Theorem: Let (R, +, .) and $(R^{l}, +, .)$ be any two semirings. The antihomomorphic image of an intuitionistic fuzzy subsemiring of R is an intuitionistic fuzzy subsemiring of R^{l} .

Proof: Let $f : \mathbb{R} \to \mathbb{R}^{l}$ be an anti-homomorphism. Then f(x+y) = f(y) + f(x) and f(xy) = f(y) f(x), for all $x, y \in \mathbb{R}$. Let V = f(A), where A is an intuitionistic fuzzy subsemiring of R. Now, for f(x), f(y) in \mathbb{R}^{l} , $\mu_{v}(f(x) + f(y)) \ge \mu_{A}(y+x) \ge \min \{\mu_{A}(y), \mu_{A}(x)\} = \min \{\mu_{A}(x), \mu_{A}(y)\}$, which implies that $\mu_{v}(f(x)+f(y)) \ge \min \{\mu_{v}(f(x)), \mu_{v}(f(y))\}$. Again, $\mu_{v}(f(x)f(y)) \ge \mu_{A}(yx) \ge \min \{\mu_{A}(y), \mu_{A}(x)\} = \min \{\mu_{A}(x), \mu_{A}(y)\}$, which implies that $\mu_{v}(f(x)f(y)) \ge \min \{\mu_{v}(f(x)), \mu_{v}(f(y))\}$. Now, for f(x), f(y) in \mathbb{R}^{l} , $v_{v}(f(x)+f(y)) \le v_{A}(y+x) \le \max \{v_{A}(y), v_{A}(x)\} = \max \{v_{A}(x), v_{A}(y)\}$, which implies that $v_{v}(f(x) + f(y)) \le \max \{v_{v}(f(x)), v_{v}(f(y))\}$. Again, $v_{v}(f(x)f(y)) \le v_{A}(yx) \le \max \{v_{A}(x), v_{A}(y)\}$, which implies that $v_{v}(f(x) + f(y)) \le \max \{v_{A}(x), v_{A}(y)\}$, which implies that $v_{v}(f(x) + f(y)) \le \max \{v_{A}(x), v_{A}(y)\}$, which implies that $v_{v}(f(x))$. Hence V is an intuitionistic fuzzy subsemiring of \mathbb{R}^{l} .

2.4 Theorem: Let (R, +, .) and $(R^{\dagger}, +, .)$ be any two semirings. The anti-homomorphic preimage of an intuitionistic fuzzy subsemiring of R^{\dagger} is an intuitionistic fuzzy subsemiring of R.

Proof: Let $f : \mathbb{R} \to \mathbb{R}^{1}$ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y) f(x), for all x and y in \mathbb{R} . Let V = f(A), where V is an intuitionistic fuzzy subsemiring of \mathbb{R}^{1} . Then $\mu_{A}(x+y) \ge \min \{\mu_{v}(f(y)), \mu_{v}(f(x))\} = \min \{\mu_{v}(f(x)), \mu_{v}(f(y))\} = \min \{\mu_{A}(x), \mu_{A}(y)\}$, which implies that $\mu_{A}(x + y) \ge \min \{\mu_{A}(x), \mu_{A}(y)\}$. Again, $\mu_{A}(xy) \ge \min \{\mu_{v}(f(y)), \mu_{v}(f(x))\} = \min \{\mu_{v}(f(x)), \mu_{v}(f(y))\} = \min \{\mu_{A}(x), \mu_{A}(y)\}$, which implies that $\mu_{A}(xy) \ge \min \{\mu_{A}(x), \mu_{A}(y)\}$. Then $v_{A}(x+y) \le \max \{v_{v}(f(y)), v_{v}(f(x))\} = \max \{v_{v}(f(x)), v_{v}(f(y))\} = \max \{v_{A}(x), \nu_{A}(y)\}$, which implies that $v_{A}(x), \nu_{A}(y)\}$. Again, $v_{A}(xy) \le \max \{v_{A}(x), \nu_{A}(y)\}$. Again, $v_{A}(xy) \le \max \{v_{v}(f(y)), v_{v}(f(y))\} = \max \{v_{A}(x), \nu_{A}(y)\}$, which implies that $v_{A}(x), \nu_{A}(y)\}$. Again, $v_{A}(xy) \le \max \{v_{v}(f(y)), v_{v}(f(y))\} = \max \{v_{A}(x), \nu_{A}(y)\}$, which implies that $v_{A}(x), \nu_{A}(y)\}$. Hence A is an intuitionistic fuzzy subsemiring of \mathbb{R} .

2.5 Theorem: Let A be an intuitionistic fuzzy subsemiring of a semiring (R, +, .). Then for α and β in [0,1], $A_{(\alpha,\beta)}$ is a subsemiring of R.

Proof: For all x and y in $A_{(\alpha, \beta)}$, we have, $\mu_A(x) \ge \alpha$ and $\nu_A(x) \le \beta$ and $\mu_A(y) \ge \alpha$ and $\nu_A(y) \le \beta$. Now, $\mu_A(x + y) \ge \min \{\mu_A(x), \mu_A(y)\} \ge \min \{\alpha, \alpha\} = \alpha$, which implies that, $\mu_A(x + y) \ge \alpha$. Now, $\mu_A(xy) \ge \min \{\mu_A(x), \mu_A(y)\} \ge \min \{\alpha, \alpha\} = \alpha$, which implies that, $\mu_A(xy) \ge \alpha$. And also, $\nu_A(x+y) \le \max \{\nu_A(x), \nu_A(y)\} \le \max \{\beta, \beta\} = \beta$, which implies that, $\nu_A(x+y) \le \beta$. And also, $\nu_A(xy) \le \max \{\nu_A(x), \nu_A(x)\} \le \alpha$, $\nu_A(y)\} \le \max \{\beta, \beta\} = \beta$, which implies that, $\nu_A(x+y) \le \beta$. Therefore, $\mu_A(x+y) \ge \alpha$, $\mu_A(xy) \ge \alpha$ and $\nu_A(x + y) \le \beta$, $\nu_A(xy) \le \beta$, we get x + y and xy in $A_{(\alpha, \beta)}$. Hence $A_{(\alpha, \beta)}$ is a subsemiring of R.

2.6 Theorem :Let $(R, +, \bullet)$ and $(R^{!}, +, \bullet)$ be any two semirings. If $f : R \to R^{!}$ is a homomorphism, then the homomorphic image of a level subsemiring of an intuitionistic fuzzy subsemiring of R is a level subsemiring of an intuitionistic fuzzy subsemiring of R[!].

Proof: Let $f : R \to R^{l}$ be a homomorphism. That is, f(x+y) = f(x)+f(y), for all x and y in R and f(xy) = f(x)f(y), for all x and y in R. Let V = f(A), where A is an intuitionistic fuzzy subsemiring of R. Clearly V is an intuitionistic fuzzy subsemiring of R. Suppose x and y in $A_{(\alpha,\beta)}$, then x+y and xy in $A_{(\alpha,\beta)}$ be a level subsemiring of A. Suppose x and y in $A_{(\alpha,\beta)}$, then x+y and xy in $A_{(\alpha,\beta)}$.Now, $\mu_V(f(x)) \ge \mu_A(x) \ge \alpha$, implies that $\mu_V(f(x)) \ge \alpha$; $\mu_V(f(y)) \ge \mu_A(y) \ge \alpha$, implies that $\mu_V(f(x)) \ge \alpha$, which implies that $\mu_V(f(x) + f(y)) \ge \alpha$, for all f(x) and f(y) in R¹. And $\mu_V(f(x)f(y)) \ge \mu_A(x) \ge \alpha$, which implies that $\nu_V(f(x) f(y)) \ge \alpha$, for all f(x) and f(y) in R¹. And $\mu_V(f(x)f(y)) \ge \mu_A(x) \le \beta$, implies that $\nu_V(f(x)) \le \beta$; $\nu_V(f(y)) \le \nu_A(y) \le \beta$, implies that $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. Then $\nu_V(f(x)f(y)) \le \nu_A(xy) \le \beta$, which implies that $\nu_V(f(x)f(y)) \le \beta$, for all f(x) and f(y) in R¹. Thence f $(A_{(\alpha,\beta)})$ is a level subsemiring of an intuitionistic fuzzy subsemiring V of a semiring R¹.

2.7 Theorem: Let $(R, +, \bullet)$ and $(R^{!}, +, \bullet)$ be any two semirings. If $f : R \to R^{!}$ is a homomorphism, then the homomorphic pre-image of a level subsemiring of an intuitionistic fuzzy subsemiring of $R^{!}$ is a level subsemiring of an intuitionistic fuzzy subsemiring of R.

Proof: Let f: $\mathbb{R} \to \mathbb{R}^{1}$ be a homomorphism. That is, f(x + y) = f(x) + f(y), for all x and y in R and f(xy) = f(x)f(y), for all x and y in R. Let V = f(A), where V is an intuitionistic fuzzy subsemiring of \mathbb{R}^{1} . Clearly A is an intuitionistic fuzzy subsemiring of R. Let x and y in R. Let $f(A_{(\alpha,\beta)})$ be a level subsemiring of V. Suppose f(x) and f(y) in $f(A_{(\alpha,\beta)})$, then f(x)+f(y) and f(x)f(y) in $f(A_{(\alpha,\beta)})$. Now, $\mu_{A}(x) = \mu_{V}(f(x)) \ge \alpha$, implies that $\mu_{A}(x) \ge \alpha$; $\mu_{A}(y) = \mu_{V}(f(y)) \ge \alpha$, for all x and y in

R. And $\mu_A(xy) \ge \alpha$, which implies that $\mu_A(xy) \ge \alpha$, for all x and y in R. And, $v_A(x) = v_V(f(x)) \le \beta$, implies that $v_A(x) \le \beta$; $v_A(y) = v_V(f(y)) \le \beta$, implies that $v_A(y) \le \beta$, we have $v_A(x+y) = v_V(f(x)+f(y)) \le \beta$, which implies that $v_A(x+y) \le \beta$, for all x and y in R. And $v_A(xy) = v_V(f(x)f(y)) \le \beta$, which implies that $v_A(xy) \le \beta$, for all x and y in R. Hence $A_{(\alpha,\beta)}$ is a level subsemiring of an intuitionistic fuzzy subsemiring A of R.

2.8 Theorem: Let $(R, +, \bullet)$ and $(R^{!}, +, \bullet)$ be any two semirings. If $f : R \rightarrow R^{!}$ is an anti-homomorphism, then the anti-homomorphic image of a level subsemiring of an intuitionistic fuzzy subsemiring of R is a level subsemiring of an intuitionistic fuzzy subsemiring of R[!].

Proof: Let $f : \mathbb{R} \to \mathbb{R}^{l}$ be an anti-homomorphism. That is, f(x+y) = f(y)+f(x), for all x and y in R and f(xy) = f(y)f(x), for all x and y in R. Let V = f(A), where A is an intuitionistic fuzzy subsemiring of R. Clearly V is an intuitionistic fuzzy subsemiring of R¹. If x and y in R, then f(x) and f(y) in R¹. Let $A_{(\alpha,\beta)}$ be a level subsemiring of A. Suppose x and y in $A_{(\alpha,\beta)}$, then y+x and yx in $A_{(\alpha,\beta)}$. Now, $\mu_V(f(x)) \ge \mu_A(x) \ge \alpha$, implies that $\mu_V(f(x)) \ge \alpha$; $\mu_V(f(y)) \ge \mu_A(y) \ge \alpha$, implies that $\mu_V(f(x)) \ge \alpha$, due to $\mu_V(f(x) + f(y)) \ge \mu_A(y+x) \ge \alpha$, which implies that $\mu_V(f(x) + f(y)) \ge \alpha$, for all f(x) and f(y) in R¹. And $\mu_V(f(x)f(y)) \ge \mu_A(yx) \ge \alpha$, which implies that $\nu_V(f(x)f(y)) \ge \alpha$, for all f(x) and f(y) in R¹. And $\nu_V(f(x)) \le \nu_A(x) \le \beta$, implies that $\nu_V(f(x)) \le \beta$; $\nu_V(f(y)) \le \nu_A(y) \le \beta$, implies that $\nu_V(f(x)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. And $\nu_V(f(x) + f(y)) \le \beta$, for all f(x) and f(y) in R¹. Hence f ($A_{(\alpha,\beta)}$) is a level subsemiring of an intuitionistic fuzzy subsemiring V of a semiring R¹.

2.9 Theorem: Let $(R, +, \bullet)$ and $(R^{!}, +, \bullet)$ be any two semirings. If $f : R \to R^{!}$ is an anti-homomorphism, then the anti-homomorphic pre-image of a level subsemiring of an intuitionistic fuzzy subsemiring of $R^{!}$ is a level subsemiring of an intuitionistic fuzzy subsemiring of R.

Proof: Let f: $\mathbb{R} \to \mathbb{R}^{1}$ be an anti-homomorphism. That is, f(x + y) = f(y) + f(x), for all x and y in R and f(xy) = f(y)f(x), for all x and y in R. Let V = f(A), where V is an intuitionistic fuzzy subsemiring of \mathbb{R}^{1} . Clearly A is an intuitionistic fuzzy subsemiring of R. Let x and y in R. Let $f(A_{(\alpha,\beta)})$ be a level subsemiring of V. Suppose f(x) and f(y) in $f(A_{(\alpha,\beta)})$, then f(y)+f(x) and f(y)f(x) in $f(A_{(\alpha,\beta)})$. Now, $\mu_{A}(x) = \mu_{V}(f(x)) \ge \alpha$, implies that $\mu_{A}(x) \ge \alpha$; $\mu_{A}(y) = \mu_{V}(f(y)) \ge \alpha$, implies that $\mu_{A}(y) \ge \alpha$, we have $\mu_{A}(x+y) = \mu_{V}(f(y)+f(x)) \ge \alpha$, which implies that $\mu_{A}(x+y) \ge \alpha$, for all x and y in R. And $\mu_{A}(xy) = \mu_{V}(f(y)f(x)) \ge \alpha$, which implies that $\mu_{A}(xy) \ge$ α , for all x and y in R. And, $\nu_{A}(x) = \nu_{V}(f(x)) \le \beta$, implies that $\nu_{A}(x) \le \beta$; $\nu_{A}(y) =$ $\nu_{V}(f(y)) \le \beta$, implies that $\nu_{A}(y) \le \beta$, we have $\nu_{A}(x+y) = \nu_{V}(f(y) + f(x)) \le \beta$, which implies that $\nu_{A}(x+y) \le \beta$, for all x and y in R. And $\nu_{A}(xy) = \nu_{V}(f(y) + f(x)) \le \beta$, which implies that $v_A(xy) \leq \beta$, for all x and y in R. Hence $A_{(\alpha,\beta)}$ is a level subsemiring of an intuitionistic fuzzy subsemiring A of R.

REFERENCES

- [1] Anthony. J.M. and Sherwood .H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69 (1979) 124 -130.
- [2] Asok Kumer Ray, On product of fuzzy subgroups, fuzzy sets and sysrems, 105 (1999) 181-183.
- [3] Atanassov. K.T, Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag Company, Bulgaria, April 1999.
- [4] Atanassov. K.T, Intuitionistic fuzzy sets, fuzzy sets and systems, 20 (1986) 87-96.
- [5] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35 (1971) 512-517.
- [6] Banerjee. B and Basnet. D.K, Intuitionistic fuzzy subrings and ideals, J.Fuzzy Math.11 (2003) 139-155.
- [7] Chakrabarty, K., Biswas, R., Nanda, A note on union and intersection of Intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(1997).
- [8] Choudhury. F.P. and Chakraborty.A.B. and Khare.S.S, A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131 (1988) 537 -553.
- [9] De, K., Biswas, R, Roy, A.R, On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3 (1997).
- [10] De, K., Biswas, R, Roy, A.R, On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 4 (1998).
- [11] Hur. K, Kang. H.W and H.K.Song, Intuitionistic fuzzy subgroups and subrings, Honam Math. J., 25 (2003) 19-41.
- [12] Kumbhojkar. H.V., and Bapat.M.S, Correspondence theorem for fuzzy ideals, Fuzzy sets and systems, (1991).
- [13] Mohamed Asaad, Groups and fuzzy subgroups, fuzzy sets and systems (1991) North-Holland.
- [14] Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133 (1988) 93-100.
- [15] Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations, J. Mathematical Analysis and Applications, 128 (1987) 241-252.
- [16] Rajesh Kumar, Fuzzy Algebra, University of Delhi Publication Division, (1) July -1993.
- [17] Rajesh Kumar, Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems, 42 (1991) 369-379.

- [18] Salah Abou-Zaid, On generalized characteristic fuzzy subgroups of a finite group, fuzzy sets and systems, 235-241 (1991).
- [19] Sidky. F.I and Atif Mishref.M, Fuzzy cosets and cyclic and Abelian fuzzy subgroups, fuzzy sets and systems, 43(1991) 243-250.
- [20] Sivaramakrishna das.P, Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 (1981) 264-269.
- [21] Vasantha kandasamy .W.B, Smarandache fuzzy algebra, American research press, Rehoboth -2003.
- [22] ZADEH. L.A, Fuzzy sets, Information and control, 8 (1965) 338-353.