A Note on Disjoint Dominating Sets in Graphs

V. Anusuya
Department of Mathematics
S.T. Hindu College
Nagercoil 629 002
Tamil Nadu, India

R. Kala
Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli 627 012
Tamil Nadu, India
karthiipyi91@yahoo.co.in

Abstract

The disjoint domination number $\gamma(G)$ of a graph G is the minimum cardinality of the union of two disjoint dominating sets in G. The disjoint independent domination number of a graph G is the minimum cardinality of the union of two disjoint independent dominating sets in G. In this paper we study these two parameters. We determine the value of $\gamma(G)$ for several graphs and give partial answers to some open problems posed in [5].

Mathematics Subject Classification: 05C69

Keywords: Disjoint domination number, Disjoint independent domination number, $\gamma\gamma$-maximum, $\gamma\gamma$-minimum

1 Introduction

By a graph we mean a finite, undirected, connected graph without loops and multiple edges. For graphs theoretical terms we refer Harary [3] and for terms related to domination we refer Haynes et al. [4].

A subset S of V is said to be a dominating set in G if every vertex in $V - S$ is adjacent to at least one vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G and a dominating set
of minimum cardinality is called a γ-set of G. A set $S \subseteq V$ is said to be independent if no two vertices in S are adjacent. The minimum cardinality of a maximal independent dominating set is called the independent domination number and it is denoted by $i(G)$.

In [5], S. M. Hedetniemi et al. introduced the concept of disjoint dominating sets in graphs. The disjoint domination number $\gamma(G)$ is defined as $\gamma(G) = \min\{|S_1| + |S_2| : S_1$ and S_2 are disjoint dominating sets of $G\}$. We say that two disjoint dominating sets whose union has cardinality $\gamma(G)$ is a $\gamma\gamma$-pair of G. The disjoint independent domination number $ii(G)$ is defined as the minimum cardinality of the union of two disjoint independent dominating sets in a graph G. In this paper we study the existence of disjoint dominating sets and disjoint independent dominating sets in graphs and find partial solutions to some problems posed in [5]. The domatic partition of G is a partition of $V(G)$, all of whose classes are dominating sets in G. The maximum number of classes of a domatic partition of G is called the domatic number of G and is denoted by $d(G)$. A graph is called domatically full if $d(G) = \delta(G) + 1$ which is the maximum possible order of a domatic partition of V. Here $\delta(G)$ is the minimum degree of a vertex of G. We need the following.

Definition 1.1 [1] The n-star graph S_n is a simple graph whose vertex set is the set of all $n!$ permutations of $\{1, 2, 3, \ldots, n\}$ and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one i, $i \neq 1$.

Theorem 1.2 [1] $\gamma(S_n) = (n - 1)!$ and S_n is domatically full.

Proposition 1.3 [5] For any cycle C_n, $n \geq 3$, $\gamma\gamma(C_n) = ii(C_n) = 2\gamma(C_n) = 2 \left\lceil \frac{n}{3} \right\rceil$.

Proposition 1.4 [5] $\gamma\gamma(P_{3k+2}) = ii(P_{3k+2}) = 2\gamma(P_{3k+2}) = 2k + 2$.

Proposition 1.5 [5] For the complete graph K_n, $\gamma\gamma(K_n) = ii(K_n) = 2$.

Theorem 1.6 [5] A connected graph G is $\gamma\gamma$-maximum if and only if either $G = C_4$ or every vertex is a leaf or a stem.

2 Main Results

Definition 2.1 The disjoint domination number $\gamma\gamma(G)$ is defined as $\gamma\gamma(G) = \min\{|S_1| + |S_2| : S_1$ and S_2 are disjoint dominating sets of $G\}$.

Definition 2.2 The disjoint independent domination number $ii(G)$ is defined as the minimum cardinality of the union of two disjoint independent dominating sets in a graph G.
We say that a graph G is $\gamma\gamma$-minimum if it has two disjoint γ-sets, that is $\gamma\gamma(G)=2\gamma(G)$. Similarly a graph G is called $\gamma\gamma$-maximum if $\gamma\gamma(G)=n$.

Theorem 2.3 If G is a graph with at least two universal vertices, then $\gamma\gamma(G)=\ii(G)=2$.

Proof. Let u and v be two universal vertices of the graph G. Then $\{u\}$ and $\{v\}$ are two disjoint independent dominating sets of G and hence $\gamma\gamma(G)=\ii(G)=2$. □

Theorem 2.4 If W_n is the wheel $C_n + K_1$, $\gamma\gamma(W_n)=1+\lceil \frac{n}{3} \rceil =\ii(W_n)$.

Proof. The singleton set S containing the center of the wheel is the γ-set of W_n. Hence $\gamma(W_n)=1$. $\gamma\gamma(C_n)=2\lceil \frac{n}{3} \rceil$ by Proposition 1.3 and a γ-set of the cycle of W_n say S' dominates center of W_n. Also S and S' are independent and $S \cap S' = \phi$. Hence $\gamma\gamma(W_n)=1+\lceil \frac{n}{3} \rceil =\ii(W_n)$. □

Corollary 2.5 A wheel W_n is a $\gamma\gamma$-minimum graph $\iff n=3$.

Proof. W_n is complete if and only if $n=3$ and so the proof follows. □

Definition 2.6 A graph obtained from a wheel by attaching a pendent edge at each vertex of an n-cycle is a helm and is denoted by H_n. Thus H_n is a graph of order $2n+1$.

Theorem 2.7 For a helm H_n

(i) $\gamma\gamma(H_n)=2n$

(ii) $\ii(H_n) = \begin{cases} 2n & \text{if } n \text{ is even} \\ \text{does not exist} & \text{if } n \text{ is odd} \end{cases}$

Proof. We know that the helm H_n contains $2n+1$ vertices. Let u_1, u_2, \ldots, u_n be the vertices of the cycle, $v_1, v_2, v_3, \ldots, v_n$ be the corresponding pendent vertices and v be the center. Then $S = \{u_1, u_2, u_3, u_4, \ldots, u_{n-3}, v_{n-2}, u_{n-1}, v_n\}$ and $S' = \{v_1, u_2, v_3, u_4, \ldots, v_{n-3}, u_{n-2}, v_{n-1}, u_n\}$ are two disjoint γ-sets of H_n. Hence $\gamma\gamma(H_n) = 2n$.

Case(i) n is even

Then S and S' are independent sets and so $\ii(H_n) = 2n$

Case(ii) n is odd

Then either S or S' is not independent and hence $\ii(H_n)$ does not exist. □

We note that H_n is a $\gamma\gamma$-minimum graph.

Definition 2.8 Web graph is a graph obtained by joining the pendent vertices of a helm H_n to form a cycle and then adding a single pendent edge to each vertex of this outer cycle. It is a graph of order $3n+1$.

Theorem 2.9 For a web graph G,
(i) $\gamma(G) = 2n + 1 + \left\lceil \frac{n}{3} \right\rceil$
(ii) $\iota(G) = \begin{cases} \frac{5n}{2} + 1 & \text{if } n \text{ is even} \\ \text{does not exist} & \text{if } n \text{ is odd} \end{cases}$

Proof. The web graph contains 2 cycles of order n, n pendent vertices and a center. Thus $|V(G)| = 3n + 1$.
Claim: $\gamma(G) = 2n + 1 + \left\lceil \frac{n}{3} \right\rceil$.
Let S be the γ-set of G obtained by taking the alternate vertices of the outer cycle, the alternate pendent vertices (not corresponding to the vertices taken in the outer cycle) and the center. Thus $|S| = n + 1$. The other dominating set S' of G can be obtained by taking the remaining vertices of the outer cycle, the remaining pendent vertices and a γ-set of the inner cycle (not corresponding to the vertices in the outer cycle). Thus $S' = n + 1 + \left\lceil \frac{n}{3} \right\rceil$. Also $S \cap S' = \phi$. Hence $\gamma(G) = n + 1 + n + \left\lceil \frac{n}{3} \right\rceil = 2n + 1 + \left\lceil \frac{n}{3} \right\rceil$.
We now determine $\iota(G)$.
Case(i): n is even
The first γ-set S can be obtained as above and it is independent. The other independent dominating set S'' can be obtained by considering the set of remaining vertices of outer cycle, remaining pendent vertices and the alternate vertices of inner cycle such that $S \cap S'' = \phi$. Therefore $|S \cup S''| = n + 1 + n + \frac{n}{2}$. Thus $\iota(G) = \frac{5n}{2} + 1$.
Case(ii): n is odd
We cannot find two disjoint dominating sets. Hence $\iota(G)$ does not exist in this case.

Definition 2.10 Grid graph is the Cartesian product of two paths.

Theorem 2.11 $\gamma(P_2 \times P_n) = 2\gamma(P_2 \times P_n)$.

Proof. For $P_2 \times P_1$ and $P_2 \times P_2$, the result is obvious. Let $\{u_1, u_2, \ldots, u_n\}$ and $\{v_1, v_2, \ldots, v_n\}$ be the vertices of the two rows of the grid as shown in the
Proof.

Case(i): $n = 4k - 1$, $k \in \mathbb{N}$

$S = \{u_1, v_3, u_5, v_7, \ldots, u_{n-2}, u_{n-1}, v_n\}$ and $S' = \{v_1, u_3, v_5, u_7, \ldots, v_{n-2}, v_{n-1}, u_n\}$ are two disjoint γ-sets of $P_2 \times P_n$ with $|S| = |S'|$. Hence $\gamma \gamma(P_2 \times P_n) = 2 \gamma(P_2 \times P_n)$.

Case(ii): $n = 4k$, $k \in \mathbb{N}$

$S = \{u_1, v_3, u_5, v_7, \ldots, v_{n-5}, u_{n-3}, v_{n-1}, u_n\}$ and $S' = \{v_1, u_3, v_5, u_7, \ldots, u_{n-5}, v_{n-3}, u_{n-1}, v_n\}$ are two disjoint γ-sets of $P_2 \times P_n$ with $|S| = |S'|$. Hence $\gamma \gamma(P_2 \times P_n) = 2 \gamma(P_2 \times P_n)$.

Case(iii): $n = 4k + 1$, $k \in \mathbb{N}$

$S = \{u_1, v_3, u_5, v_7, \ldots, u_{n-4}, v_{n-2}, u_n\}$ and $S' = \{v_1, u_3, v_5, u_7, \ldots, v_{n-4}, u_{n-2}, v_n\}$ are two disjoint γ-sets of $P_2 \times P_n$ with $|S| = |S'|$. Hence $\gamma \gamma(P_2 \times P_n) = 2 \gamma(P_2 \times P_n)$.

Case(iv): $n = 4k + 2$, $k \in \mathbb{N}$

$S = \{u_1, v_3, u_5, v_7, \ldots, u_{n-5}, v_{n-3}, u_{n-1}, v_n\}$ and $S' = \{v_1, u_3, v_5, u_7, \ldots, v_{n-5}, u_{n-3}, v_{n-1}, u_n\}$ are two disjoint γ-sets of $P_2 \times P_n$ with $|S| = |S'|$. Hence $\gamma \gamma(P_2 \times P_n) = 2 \gamma(P_2 \times P_n)$.

From the above cases we get, $\gamma \gamma(P_2 \times P_n) = 2 \gamma(P_2 \times P_n)$.

\[\begin{align*}
\text{Theorem 2.12 } \gamma \gamma(P_3 \times P_n) &= \begin{cases}
3 & \text{if } n=1 \\
4 & \text{if } n=2 \\
8 & \text{if } n=4 \\
6k & \text{if } n=4k-1 \\
2 \gamma(P_3 \times P_n) + 1 & \text{otherwise}
\end{cases}
\end{align*}\]

Proof.

When $n = 1, 2$ and 4 the result is obvious. Let $\{u_1, u_2, \ldots, u_n\}, \{v_1, v_2, \ldots, v_n\}$ and $\{w_1, w_2, \ldots, w_n\}$ be the vertices of the three rows of the grid
$P_3 \times P_n$, as shown in the figure.

In [6], it has been proved that $\gamma(P_3 \times P_n) = \left\lceil \frac{3n+4}{4} \right\rceil$.

Case(i): $n = 4k - 1$, $k \in \mathbb{N}$

$S = \{u_1, w_1, v_3, u_5, v_7, \ldots, u_{n-2}, w_{n-2}, v_n\}$ and $S' = \{v_1, u_3, w_3, v_5, w_7, \ldots, v_{n-2}, u_n, w_n\}$ are two disjoint γ-sets of $P_3 \times P_n$ with $|S| = |S'| = 3k$. Hence $\gamma \gamma(P_3 \times P_n) = 6k$.

Case(ii): $n = 4k$, $k \in \mathbb{N} - \{1\}$

$S = \{u_1, w_1, v_3, u_5, v_7, \ldots, u_{n-3}, w_{n-3}, v_{n-1}, u_n, w_n\}$ and $S' = \{v_1, u_3, v_3, w_5, u_7, v_7, \ldots, u_{n-5}, w_{n-5}, v_{n-3}, u_{n-1}, w_{n-1}, v_n\}$ are two disjoint γ-sets of $P_3 \times P_n$ with $|S| = \left\lfloor \frac{3k+4}{4} \right\rfloor$ and $|S'| = \left\lfloor \frac{3k+4}{4} \right\rfloor + 1$. Hence $\gamma \gamma(P_3 \times P_n) = 2\gamma(P_3 \times P_n) + 1$.

Case(iii): $n = 4k + 1$, $k \in \mathbb{N}$

$S = \{u_1, w_1, v_3, u_5, w_7, \ldots, v_{n-2}, u_n, w_n\}$ and $S' = \{v_1, u_3, v_3, w_5, u_7, v_7, \ldots, v_{n-3}, w_{n-3}, u_{n-1}, v_n\}$ are two disjoint γ-sets of $P_3 \times P_n$ with $|S| = \gamma(P_3 \times P_n)$ and $|S'| = \gamma(P_3 \times P_n) + 1$. Hence $\gamma \gamma(P_3 \times P_n) = 2\gamma(P_3 \times P_n) + 1$.

Case(iv): $n = 4k + 2$, $k \in \mathbb{N}$

$S = \{u_1, w_1, v_3, u_5, v_7, \ldots, w_{n-3}, v_{n-1}, w_n\}$ and $S' = \{v_1, u_3, w_3, v_5, u_7, v_7, \ldots, u_{n-3}, w_{n-3}, v_{n-1}, v_n\}$ are two disjoint γ-sets of $P_3 \times P_n$ with $|S| = \gamma(P_3 \times P_n) + 1$ and $|S'| = \gamma(P_3 \times P_n)$. Hence $\gamma \gamma(P_3 \times P_n) = 2\gamma(P_3 \times P_n) + 1$.

\[\square\]

Theorem 2.13 $\gamma \gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n)$.

Proof.

$\{u_1, u_2, u_3, \ldots, u_n\}, \{v_1, v_2, v_3, \ldots, v_n\}, \{w_1, w_2, w_3, \ldots, w_n\}$ and $\{x_1, x_2, x_3, \ldots, x_n\}$ are the vertices of the 1^{st}, 2^{nd}, 3^{rd} and 4^{th} rows of the grid $P_4 \times P_n$ as shown in the figure. We have
\(\gamma(P_4 \times P_n) = \begin{cases}
+1 & \text{if } n = 1, 2, 3, 5, 6, 9 \\
n & \text{otherwise}
\end{cases} \)

Case (1): \(n = 3k \)
When \(n = 3 \), \(S = \{w_1, u_2, v_3, x_3\} \) and \(S' = \{v_1, x_2, u_3, w_3\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_3) = 2\gamma(P_4 \times P_3) = ii(P_4 \times P_3) \).
When \(n = 6 \), \(S = \{v_1, x_2, u_3, w_4, v_5, u_6, x_6\} \) and \(S' = \{w_1, u_2, x_3, v_4, u_5, x_5, w_6\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_6) = 2\gamma(P_4 \times P_6) = ii(P_4 \times P_6) \).
When \(n = 9 \), \(S = \{u_1, x_1, v_2, w_3, u_4, v_5, x_5, v_6, x_7, u_8, w_9\} \) and \(S' = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, w_8, u_9, x_9\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_9) = 2\gamma(P_4 \times P_9) = ii(P_4 \times P_9) \).
When \(n = 12 \), \(S = \{v_1, x_2, u_3, w_4, v_5, x_6, w_7, v_8, x_9, u_10, x_{11}, u_{12}\} \) and \(S' = \{w_1, u_2, x_3, v_4, w_5, x_6, w_7, u_8, x_9, w_{10}, x_{11}, u_{12}\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_{12}) = 2\gamma(P_4 \times P_{12}) = ii(P_4 \times P_{12}) \).

Subcase (1.i): \(n \) is odd, \(k = 5, 7, 9, \ldots \)
\(S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, \ldots, w_{n-7}, u_{n-6}, v_{n-5}, x_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\} \)
and \(S' = \{v_1, x_2, u_3, v_4, u_5, x_6, w_7, v_8, x_9, \ldots, w_{n-8}, u_{n-7}, v_{n-6}, x_{n-5}, w_{n-4}, u_{n-3}, x_{n-2}, u_{n-1}, w_n\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).

Subcase (1.ii): \(n \) is even, \(k = 6, 8, 10, \ldots \)
\(S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, \ldots, w_{n-7}, u_{n-6}, v_{n-5}, x_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\} \)
and \(S' = \{w_1, u_2, x_3, v_4, u_5, x_6, w_7, u_8, x_9, \ldots, w_{n-8}, u_{n-7}, v_{n-6}, x_{n-5}, w_{n-4}, u_{n-3}, x_{n-2}, u_{n-1}, w_n\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).

Case (2): \(n = 3k + 1 \)
When \(n = 1 \), \(S = \{u_1, w_1\} \) and \(S' = \{v_1, x_1\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).

Subcase (2.i): \(n \) is odd, \(k = 2, 4, 6, \ldots \)
\(S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, \ldots, x_{n-7}, v_{n-6}, x_{n-5}, u_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\} \)
and \(S' = \{w_1, u_2, x_3, v_4, u_5, x_6, w_7, u_8, x_9, \ldots, v_{n-7}, w_{n-6}, u_{n-5}, x_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).

Subcase (2.ii): \(n \) is even, \(k = 1, 3, 5, \ldots \)
\(S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, \ldots, u_{n-7}, w_{n-6}, u_{n-5}, x_{n-4}, x_{n-2}, u_{n-1}, w_n\} \)
and \(S' = \{u_1, w_2, x_3, v_4, u_5, x_6, w_7, u_8, x_9, \ldots, u_{n-7}, w_{n-6}, u_{n-5}, x_{n-4}, x_{n-2}, u_{n-1}, w_n\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).

Case (3): \(n = 3k + 2 \)
When \(n = 2 \), \(S = \{u_1, x_1, v_2\} \) and \(S' = \{v_1, u_2, x_2\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).
When \(n = 5 \), \(S = \{v_1, x_2, u_3, v_4, x_5\} \) and \(S' = \{w_1, u_2, x_3, v_4, u_5, w_5\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).
When \(n = 8 \), \(S = \{v_1, x_2, u_3, w_4, v_5, x_6, u_7, w_8\} \) and \(S' = \{w_1, u_2, x_3, v_4, w_5, u_6, x_7, v_8\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma \gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).

Subcase (3.i): \(n \) is odd, \(k = 3, 5, 7, \ldots \)

\(S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, x_8, \ldots, v_{n-7}, u_{n-6}, x_{n-5}, v_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\} \) and \(S' = \{w_1, u_2, x_3, v_4, x_5, u_6, w_7, u_8, \ldots, x_{n-6}, u_{n-5}, w_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma \gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).

Subcase (3.ii): \(n \) is even, \(k = 4, 6, 8, \ldots \)

\(S = \{v_1, x_2, u_3, w_4, x_5, x_6, v_7, x_8, u_9, \ldots, x_{n-8}, v_{n-7}, x_{n-6}, u_{n-5}, w_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\} \) and \(S' = \{w_1, u_2, x_3, v_4, x_5, u_6, w_7, u_8, x_9, \ldots, u_{n-8}, w_{n-7}, x_{n-6}, u_{n-5}, v_{n-4}, u_{n-3}, x_{n-2}, u_{n-1}, v_n\} \) are two disjoint independent \(\gamma \)-sets. Hence \(\gamma \gamma(P_4 \times P_3) = 2\gamma(P_4 \times P_3) = ii(P_4 \times P_3) \). Thus from the above cases, \(\gamma \gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n) = ii(P_4 \times P_n) \).

Theorem 2.14 For any 2 integers \(m \) and \(n \) with \(n \geq 5, m \geq 2 \) we can construct a tree \(T \) with \(\gamma \gamma(T) = n - m + 1 = ii(T) \).

Proof. Let \(m \) and \(n \) be 2 integers with \(n \geq 4 \) and \(m \geq 2 \). Let \(u \) be the root of \(T \) which is a pendant vertex and \(m \) be the degree of the support \(v \) of \(u \). Let the neighbors of \(v \) other than \(u \) be \(u_1, u_2, u_3, \ldots, u_{m-1} \). Each \(u_i \) can have any number of neighbors say \(u_{ij} \) other than \(v \) where \(1 \leq i \leq m - 1 \) and \(j \geq 1 \) such that \(\sum\sum 1 = r \) and each \(u_{ijk}, k \geq 1 \) such that \(\sum\sum\sum 1 = s \). Then \(\sum\sum 1 + \sum\sum\sum 1 + m + 1 = n \). We now construct two disjoint dominating sets of \(T, S \) and \(S' \). Without loss of generality let \(u \in S \). Then as \(v \) is adjacent to \(u, u \notin S', v \in S' \). Then \(u_{ij}, 1 \leq i \leq m - 1 \) must be in \(S \). Since \(u_{ij} \) are adjacent to \(u_{ij}, u_{ijk} \in S' \). Thus the members of \(S \) are \(u \) and \(u_{ijk} \). Therefore \(S \) is a dominating set of \(T \). As \(v \in S' \), it dominates \(u \) and \(u_1, u_2, u_3, \ldots, u_{m-1} \). Hence \(u, u_1, u_2, u_3, \ldots, u_{m-1} \) \(\notin S' \). Let \(u_{ij} \in S' \). Then \(u_{ijk} \) dominates \(u_{ij} \). Thus the set \(S \) consisting of the vertices \(v \) and \(u_{ijk} \) is a dominating set of \(T \) disjoint from \(S \). There is no other dominating set disjoint with \(S \) or \(S' \) with minimum cardinality as any dominating set should contain either \(u \) or \(v \). Also \(S \) and \(S' \) are independent. Hence \(\gamma \gamma(T) = |S \cup S'| = n - m + 1 = ii(T) \).

Theorem 2.15 For a \(n \)-star graph \(S_n, \gamma \gamma(S_n) = 2\gamma(S_n) \) and consequently \(S_n \) is a \(\gamma \gamma \)-minimum graph

Proof. We know that \(S_n \) is \((n - 1)\) regular. By Theorem 1.2 \(\gamma(S_n) = (n - 1)! \) and \(S_n \) is domatically full. Also every class of domatic partition of \(S_n \) is a \(\gamma \)-set of \(S_n \). Hence any two members of the domatic partition form a pair of disjoint dominating sets and so \(\gamma \gamma(S_n) = 2\gamma(S_n) \).
In [5], hypercubes are conjectured to be $\gamma\gamma$-minimum for all $n \geq 2$. We give a partial solution to this conjecture.

Definition 2.16 [2] The n-cube Q_n is a graph whose vertex set is the set of all n-dimensional boolean vectors, two vertices being joined if and only if they differ in exactly one co-ordinate.

We use the following notation. By (0) we mean the boolean vector with all coordinates 0. If $1 \leq i_1 < i_2 < \ldots < i_k \leq n$, we denote by (i_1,i_2,\ldots,i_k) the n-tuple having 1 in the coordinates i_1,i_2,\ldots,i_k and 0 elsewhere.

Example 2.17 $\gamma\gamma(Q_1) = 2\gamma(Q_1)$ for $1 \leq n \leq 7$.

$\gamma\gamma(Q_1) = 2$ since $S = \{(1)\}$ and $S' = \{(2)\}$ are two disjoint dominating sets of Q_1. $\gamma\gamma(Q_2) = 4$ since $S = \{(1),(2)\}$ and $S' = \{(0),(1,2)\}$ are two disjoint dominating sets of Q_2. $\gamma\gamma(Q_3) = 4$ since $S = \{(1),(2),(3)\}$ and $S' = \{(1,2),(2,3)\}$ are two disjoint dominating sets of Q_3. $\gamma\gamma(Q_4) = 8$ since $S = \{(1),(2),(3),(4)\}$ and $S' = \{(1,2),(2,3),(3,4)\}$ are two disjoint dominating sets of Q_4. $\gamma\gamma(Q_5) = 14$ since $S = \{(0),(1,2),(1,3),(1,4,5),(2,3,4),(2,3,5),(2,3,4,5)\}$ and $S' = \{(1),(2),(3),(4,5),(1,2,3,4),(1,2,3,5),(1,2,3,4,5)\}$ are two disjoint dominating sets of Q_5. $\gamma\gamma(Q_6) = 24$ since $S = \{(0),(1,3),(2,3),(1,2,4),(1,3,4,5),(3,4,5),(3,4,6),(1,2,4,5),(1,2,4,6),(3,4,5,6),(1,2,3,4,5),(2,3,4,5),(2,3,5,6),(1,2,3,4,5),(2,3,4,5),(2,3,5,6),(1,2,3,4,5),(2,3,4,5),(2,3,5,6)\}$ and $S' = \{(1),(2),(3),(4,5),(1,2,3,4),(1,2,3,5),(1,2,3,4,5),(2,3,4,5),(2,3,5,6),(1,2,3,4,5),(2,3,4,5),(2,3,5,6)\}$ are two disjoint dominating sets of Q_6. $\gamma\gamma(Q_7) = 32$ since $S = \{(0),(1,2,7),(1,3,4),(1,5,6),(2,3,5),(2,2,6),(3,6,7),(4,5,7),(1,2,3,6),(1,2,4,5),(1,3,5,7),(1,4,6,7),(2,3,4,7),(2,5,6,7),(3,4,5,6),(1,2,3,4,5,6,7)\}$ and $S' = \{(1),(2,6),(3,4),(5,7),(2,3,7),(2,4,5),(3,5,6),(4,6,7),(1,2,3,5),(1,2,4,7),(1,3,6,7),(1,4,5,6),(1,2,3,6),(1,2,5,6,7),(1,3,4,5,7),(2,3,4,5,6,7)\}$ are two disjoint dominating sets of Q_7. Hence by [2], $\gamma\gamma(Q_n) = 2\gamma(Q_n)$ for $1 \leq n \leq 7$.

In this connection, we propose the following conjecture.

Conjecture: Hypercubes Q_n are $\gamma\gamma$-minimum for $n \geq 8$.

Theorem 2.18 Let G be a graph without isolated vertices. Then $2 \leq \gamma\gamma(G) \leq p$. Lower bound is attained if and only if $G \cong K_n$ or G has at least two vertices of full degree.

Proof. Obviously $2 \leq \gamma\gamma(G) \leq p$. Suppose $\gamma\gamma(G) = 2$. Then there exists two disjoint dominating sets S and S' such that both have cardinality one. This is possible if and only if $G \cong K_n$ or G has at least two vertices of full degree. \qed

Definition 2.19 The trestled graph of index k denoted by $T_k(G)$ is a graph obtained from G by adding k copies of K_2 for each edge uv of G and joining u and v to the respective end vertices of each K_2.
Theorem 2.20 If G is a trestled graph of index k of a cycle C_n, then $\gamma\gamma(G) = (k + 1)n$ where $k \in \mathbb{N}$.

Proof. The trestled graph of a cycle C_n of index k contains $n + 2kn = (2k + 1)n$ vertices. The set of n vertices of the cycle C_n say S is a γ-set of G. The set of any one of the vertices of each of the newly added edge say S' is another minimum dominating set of G containing nk vertices. Also $S \cap S' = \phi$. Hence $\gamma\gamma(G) = (k + 1)n$. \hfill \Box

Corollary 2.21 If $G \cong T_1(C_n)$ then $\gamma\gamma(G) = 2\gamma(G)$.

Corollary 2.22 If $G \cong T_k(C_n)$ then $ii(G) = 2kn$.

Theorem 2.23 If $G \cong T_k(P_n)$ then $\gamma\gamma(G) = n + k(n - 1)$.

Proof. The set of n vertices of the path P_n say S is a γ-set of $T_k(P_n)$. Hence $|S| = n$. P_n has $(n - 1)$ edges and corresponding to each edge there are k edges. The set of one of the vertices of these $k(n - 1)$ edges say S' form a dominating set of $T_k(P_n)$ and $S \cap S' = \phi$. Hence $|S'| = k(n - 1)$ and so $\gamma\gamma(T_k(P_n)) = n + k(n - 1)$. Thus $\gamma\gamma(T_k(P_n)) = n + k(n - 1)$. \hfill \Box

Theorem 2.24 If $G \cong T_m(K_{1,n})$ then $\gamma\gamma(T_m(K_{1,n})) = n + 1 + mn$.

Proof. The set of $(n + 1)$ vertices of the star say S dominates G and hence $|S| = n + 1$. $K_{1,n}$ has n edges and corresponding to each edge there are m edges. The set consisting of one vertex from each of the nk edges S' form an independent dominating set of G. Hence $|S'| = mn$. Also $S \cap S' = \phi$. Therefore $\gamma\gamma(T_m(K_{1,n})) = n + 1 + mn$. \hfill \Box

Corollary 2.25 $\gamma\gamma(T_1(K_{1,n})) = 2\gamma(T_1(K_{1,n}))$.

Proof. The $(n + 1)$ vertices of $K_{1,n}$ dominates $T_1(K_{1,n})$. Hence $|S| = n + 1$. The set consisting of one vertex from each of the newly added edge of $T_1(K_{1,n})$ together with the other vertex of the last edge say S' form a dominating set of $T_1(K_{1,n})$ disjoint from S. Hence $|S'| = n + 1$ and so $\gamma\gamma(T_1(K_{1,n})) = 2(n + 1) = 2\gamma(T_1(K_{1,n}))$. \hfill \Box

Definition 2.26 The total graph $T(G)$ of a graph $G = (V, E)$ has vertices that correspond one to one with the elements of $V \cup E$. Two vertices in $T(G)$ are adjacent if and only if the corresponding elements are adjacent or incident in G.

Theorem 2.27 $\gamma\gamma(T(P_n)) = \begin{cases} 2\gamma(T(P_n)) + 1 & \text{if } n \equiv 3(\text{mod } 5) \\ 2\gamma(T(P_n)) & \text{otherwise} \end{cases}$
Hence \(\gamma(T)\) of vertex \(T\) is a minimal dominating set of \(T\). Thus \(|\gamma(T)| = 2\gamma(T)\).

Proof. Let \(\{v_1, v_2, v_3, \ldots, v_n\}\) be the vertex set of \(P_n\). As \(P_n\) contains \(n\) vertices, \(T(P_n)\) contains \((2n - 1)\) vertices, say \(v_1, e_1, v_2, e_2, v_3, \ldots, e_{n-1}, v_n\). It is easy to observe that \(\gamma(T(P_n)) = \lceil \frac{2n-1}{3} \rceil\).

Case(i): \(n \equiv 0 (mod\ 5)\)

\[S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, v_{n-8}, e_{n-6}, v_{n-3}, e_{n-1}\}\] and

\[S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, e_{n-9}, v_{n-6}, e_{n-4}, e_{n-2}, v_n\}\] are two disjoint \(\gamma\)-sets of \(T(P_n)\). Hence \(\gamma(T(P_n)) = 2\gamma(T(P_n))\).

Case(ii): \(n \equiv 1 (mod\ 5)\)

\[S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, v_{n-9}, e_{n-6}, e_{n-4}, v_{n-1}\}\] and

\[S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, e_{n-7}, v_{n-4}, e_{n-2}, v_n\}\] are two disjoint \(\gamma\)-sets of \(T(P_n)\). Hence \(\gamma(T(P_n)) = 2\gamma(T(P_n))\).

Case(iii): \(n \equiv 2 (mod\ 5)\)

\[S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, e_{n-8}, v_{n-5}, e_{n-3}, v_{n-1}\}\] and

\[S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, v_{n-8}, e_{n-6}, v_{n-3}, e_{n-1}\}\] are two disjoint \(\gamma\)-sets of \(T(P_n)\). Hence \(\gamma(T(P_n)) = 2\gamma(T(P_n))\).

Case(iv): \(n \equiv 3 (mod\ 5)\)

\[S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, e_{n-9}, v_{n-6}, e_{n-4}, v_{n-1}\}\] is the \(\gamma\)-set of \(T(P_n)\) and is unique. \(S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, e_{n-7}, v_{n-4}, e_{n-2}, v_n\}\) is the minimal dominating set of \(T(P_n)\) disjoint from \(S\) and \(|S'| = |S| + 1\). Hence \(\gamma(T(p_n)) = 2\gamma(T(P_n)) + 1\).

Case(v): \(n \equiv 4 (mod\ 5)\)

\[S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, v_{n-7}, e_{n-5}, v_{n-2}, e_{n-1}\}\] and

\[S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, e_{n-8}, v_{n-5}, e_{n-3}, v_n\}\] are two disjoint \(\gamma\)-sets of \(T(P_n)\). Hence \(\gamma(T(P_n)) = 2\gamma(T(P_n))\).

\[\square\]

Theorem 2.28 \(\gamma(T(C_n)) = 2 \lceil \frac{2n}{3} \rceil\).

Proof. \(T(C_n)\) contains \(2n\) vertices and each vertex is of degree 4 as each vertex of \(T(C_n)\) is incident with two vertices and two edges of \(C_n\). Since \(T(C_n)\) has \(2n\) vertices, we can construct two disjoint dominating set \(S\) and \(S'\) of \(T(C_n)\) in such a way that no two vertices of either \(S\) or \(S'\) dominates the same vertex. Thus \(|S| = |S'| = \lceil \frac{2n}{3} \rceil\) and therefore \(\gamma(T(C_n)) = 2 \lceil \frac{2n}{3} \rceil\).

\[\square\]

Theorem 2.29 \(\gamma(T(K_{1,n})) = n + 1\).

Proof. Let \(v\) be the center and \(v_1, v_2, v_3, \ldots, v_{n-1}\) be the pendant vertices of \(K_{1,n}\). Then \(T(K_{1,n})\) contains \((2n + 1)\) vertices. \(v\) is the universal vertex of \(T(K_{1,n})\). Hence \(S = \{v\}\) is the \(\gamma\)-set of \(T(K_{1,n})\) and \(S' = \{v_1, v_2, v_3, \ldots, v_{n-1}\}\) is a minimal dominating set of \(T(K_{1,n})\). Also \(S \cap S' = \emptyset\) and \(|S'| = n\). Any minimal dominating set other than \(S\) contains \(n\) vertices. Hence \(\gamma(T(K_{1,n})) = n + 1\).

\[\square\]
In [5], "when is $\gamma \gamma (G) + \gamma \gamma (\overline{G}) = n + 4?$" was posed as an open problem. We observe that if $G \cong C_4$ or a connected graph in which every vertex is a leaf or a stem then $\gamma \gamma (G) + \gamma \gamma (\overline{G}) = n + 4$.

Example 2.30 The path P_n when $n = 3k + 2$, $k \in \mathbb{N}$ has $\gamma \gamma (P_n) = \frac{2(n+1)}{3}$.

$\gamma \gamma (P_n) = \gamma \gamma (P_{3k+2}) = 2\gamma (P_{3k+2}) = 2(k+1) = \frac{2n+2}{3} = \frac{2(n+1)}{3}$.

This example gives a partial answer to the question "for which class of trees T is $\gamma \gamma (T) = \frac{2(n+1)}{3}$.

We also see that the cycle C_n with $n = 3k + 2$, $k \in \mathbb{N}$ has $\gamma \gamma (C_n) = \frac{2(n+1)}{3}$.

For, $\gamma \gamma (C_n) = \gamma \gamma (C_{3k+2}) = 2\left\lceil \frac{3k+2}{3} \right\rceil = 2(k+1) = \frac{2(n+1)}{3}$.

References

Received: June, 2012