∞-Tuples of Operators and Hereditarily

Mezban Habibi

Department of Mathematics
Dehdasht Branch, Islamic Azad University, Dehdasht, Iran
P. O. Box 181 40, Lidingo, Stockholm, Sweden
habibi.m@iaudehasht.ac.ir

Sadegh Masoudi

Young research group
Islamic Azad University, Dehdasht branch, Dehdasht, Iran
masoudi34@gmail.com

Fatemeh Safari

Department of Mathematics
Islamic Azad University, Branch of Dehdasht, Dehdasht, Iran
P. O. Box 7571734494, Dehdasht, Iran
safari.s@iaudehasht.ac.ir

Abstract

In this paper, we introduce for an ∞-tuple of operators on a Banach space and some conditions to an ∞-tuple to satisfying the HypercyclicityCriterion.

Mathematics Subject Classification: 37A25, 47B37

Keywords: Hypercyclicity criterion, ∞-tuple, Hypercyclic vector, Hereditarily ∞-tuple

1 Introduction

Let \mathcal{X} be an infinite dimensional Banach space and T_1, T_2, \ldots are commutative bounded linear operators on \mathcal{X}. By an ∞-tuple we mean the ∞-component $\mathcal{T} = (T_1, T_2, \ldots)$. For the ∞-tuple $\mathcal{T} = (T_1, T_2, \ldots)$ the set

$$\mathcal{F} = \{T_1^{k_1}T_2^{k_2} \ldots : k_i \geq 0, i = 1, 2, \ldots, n\}$$
is the semigroup generated by T. For $x \in \mathcal{X}$, take

$$\text{Orb}(T, x) = \{ Sx : S \in \mathcal{F} \}.$$

In other hand

$$\text{Orb}(T, x) = \{ T_1^{k_1}T_2^{k_2}\ldots(x) : k_i \geq 0, i = 1, 2, \ldots \}.$$

The set $\text{Orb}(T, x)$ is called orbit of vector x under T and ∞-Tuple $T = (T_1, T_2, \ldots)$ is called hypercyclic ∞-tuple, if there is a vector $x \in \mathcal{X}$ such that, the set $\text{Orb}(T, x)$ is dense in \mathcal{X}, that is

$$\text{Orb}(T, x) = \{ T_1^{k_1}T_2^{k_2}\ldots(x) : k_i \geq 0, i = 1, 2, \ldots \} = \mathcal{X}.$$

In this case, the vector x is called a hypercyclic vector for the ∞-tuple T.

2 Preliminary Notes / Materials and Methods

Definition 2.1 Let \mathcal{V} be a topological vector space (TVS) and T_1, T_2, \ldots are bounded linear mapping on \mathcal{V}, and $T = (T_1, T_2, \ldots)$ be an ∞-tuple of operators. The ∞-tuple T is called weakly mixing if

$$T \times T \times \ldots : \mathcal{X} \times \mathcal{X} \times \ldots \to \mathcal{X} \times \mathcal{X} \times \ldots$$

is topologically transitive.

Definition 2.2 Let

$$\{ m_{(k, 1)} \}_{k=1}^{\infty}, \{ m_{(k, 2)} \}_{k=1}^{\infty}, \ldots$$

be increasing sequences of non-negative integers. The ∞-tuple $T = (T_1, T_2, \ldots)$ is called hereditarily hypercyclic with respect to

$$\{ m_{j, 1} \}_{j=1}^{\infty}, \{ m_{j, 2} \}_{j=1}^{\infty}, \ldots$$

if for all subsequences

$$\{ m'_{j, 1} \}_{j=1}^{\infty}, \{ m'_{j, 2} \}_{j=1}^{\infty}, \ldots$$

of

$$\{ m_{j, 1} \}_{j=1}^{\infty}, \{ m_{j, 2} \}_{j=1}^{\infty}, \ldots$$

respectively, the sequence

$$\{ T_1^{m'_{(k, 1)}}T_2^{m'_{(k, 2)}}\ldots \}$$

is hypercyclic. In the other hand, there exists a vector x in \mathcal{X} such that

$$\{ T_1^{m_{(k, 1)}}T_2^{m_{(k, 2)}}\ldots(x) \} = \mathcal{X}.$$
Note 2.3 Note that, if X be an finite dimensional Banach space, then there are no hypercyclic operator on X', also there are no ∞-tuple or n-tuple on X.

All of operators in this paper are commutative bounded linear operators on a Banach space. Also, note that by $\{j, i\}$ or (j, i) we mean a number, that was showed by this mark and related with this indexes, not a pair of numbers. Readers can see [1 − 10] for some information.

3 Results and Discussion

These are the main results of the paper.

If the ∞-tuple of continuous linear mappings satisfying hypothesis of bellow theorem then we say that is satisfying the Hypercyclicity Criterion.

Theorem 3.1 (The Hypercyclicity Criterion for ∞-Tuples) Let X be a separable Banach space and $T = (T_1, T_2, ...)$ is an ∞-tuple of continuous linear mappings on X. If there exist two dense subsets Y and Z in X, and strictly increasing sequences $\{m_{j,1}\}_{j=1}^\infty, \{m_{j,2}\}_{j=1}^\infty, ...$ such that:

1. $T_1^{m_{j,1}}T_2^{m_{j,2}}... \to 0$ on Y as $j \to \infty$,
2. There exist functions $\{S_j : Z \to X\}$ such that for every $z \in Z, S_jz \to 0$, and $T_1^{m_{j,1}}T_2^{m_{j,2}}...S_jz \to z$, on Z as $j \to \infty$, then T is a hypercyclic ∞-tuple.

Now, the main theorem of this paper is the bellow theorem.

Theorem 3.2 An ∞-tuple $T = (T_1, T_2, ...)$ is hereditarily hypercyclic with respect to increasing sequences of non-negative integers

$$\{m_{j,1}\}_{j=1}^\infty, \{m_{j,2}\}_{j=1}^\infty, ...$$

if and only if for all given any two open sets U, V, there exist some positive integers $M_1, M_2, ...$ such that

$$T_1^{m_{k,1}}T_2^{m_{k,2}}...(U) \cap V \neq \phi$$

for

$$\forall m_{k,1} > M_1, \forall m_{k,2} > M_2, ...$$

Proof. Let $T = (T_1, T_2, ...)$ be hereditarily hypercyclic ∞-tuple with respect to increasing sequences of non-negative integers

$$\{m_{j,1}\}_{j=1}^\infty, \{m_{j,2}\}_{j=1}^\infty, ...$$
and suppose that there exist some open sets \mathcal{U}, \mathcal{V} such that

$$T_1^{m_{k,1}}T_2^{m_{k,2}}...(\mathcal{U}) \cap \mathcal{V} = \phi$$

for some subsequence

$$\{m'_{j,1}\}_{j=1}^{\infty}, \{m'_{j,2}\}_{j=1}^{\infty}, ...$$

of

$$\{m_{j,1}\}_{j=1}^{\infty}, \{m_{j,2}\}_{j=1}^{\infty}, ...$$

respectively. Since the ∞-tuple $\mathcal{T} = (T_1, T_2, ...)$ is hereditarily hypercyclic with respect to

$$\{m_{j,1}\}_{j=1}^{\infty}, \{m_{j,2}\}_{j=1}^{\infty}, ...$$

and \mathcal{U}, \mathcal{V} are open sets in \mathcal{X}, satisfying

$$T_1^{m_{k,1}}T_2^{m_{k,2}}...(\mathcal{U}) \cap \mathcal{V} \neq \phi$$

for any

$$m_{(k,j)} > M_j, j = 1, 2, ...$$

So there exist (i, j), large enough for $j = 1, 2, ...$ such that $m_{(k,i)} > M_j$ for $j = 1, 2, ...$ and

$$T_1^{m_{(k,1)}}T_2^{m_{(k,2)}}...(\mathcal{U}) \cap \mathcal{V} \neq \phi.$$

This implies that

$$\{T_1^{m_{(k,1)}}T_2^{m_{(k,2)}}\}$$

is hypercyclic, so the ∞-tuple $\mathcal{T} = (T_1, T_2, ..., T_n)$ is indeed hereditarily hypercyclic with respect to the sequences

$$\{m_{(k,1)}\}_{k=1}^{\infty}, \{m_{(k,2)}\}_{k=1}^{\infty},$$

By this the proof is complete.
Theorem 3.3 An ∞-tuple $\mathcal{T} = (T_1, T_2, \ldots)$ is hereditarily hypercyclic with respect to increasing sequences of non-negative integers $\{m_{j,1}\}_{j=1}^{\infty}, \{m_{j,2}\}_{j=1}^{\infty}, \ldots$, if and only if for all given any two open sets \mathcal{U}, \mathcal{V}, there exist some positive integers M_1, M_2, \ldots such that $T_1^{m_{k,1}} T_2^{m_{k,2}} \ldots (\mathcal{U}) \cap \mathcal{V} \neq \phi$ for $\forall m_{k,1} > M_1, \forall m_{k,2} > M_2, \ldots$.

Proof. Let $\mathcal{T} = (T_1, T_2, \ldots)$ be hereditarily hypercyclic ∞-tuple with respect to increasing sequences of non-negative integers $\{m_{j,1}\}_{j=1}^{\infty}, \{m_{j,2}\}_{j=1}^{\infty}, \ldots$, and suppose that there exist some open sets \mathcal{U}, \mathcal{V} such that $T_1^{m_{k,1}} T_2^{m_{k,2}} \ldots (\mathcal{U}) \cap \mathcal{V} = \phi$ for some subsequence $\{m'_{j,1}\}_{j=1}^{\infty}, \{m'_{j,2}\}_{j=1}^{\infty}, \ldots$ of $\{m_{j,1}\}_{j=1}^{\infty}, \{m_{j,2}\}_{j=1}^{\infty}, \ldots$ respectively. Since the ∞-tuple $\mathcal{T} = (T_1, T_2, \ldots)$ is hereditarily hypercyclic with respect to $\{m_{j,1}\}_{j=1}^{\infty}, \{m_{j,2}\}_{j=1}^{\infty}, \ldots$, thus $\{T_1^{m'_{k,1}} T_2^{m'_{k,2}} \ldots \}$ is hypercyclic, and so we get a contradiction.

Conversely, suppose that $\{m'_{j,1}\}_{j=1}^{\infty}, \{m'_{j,2}\}_{j=1}^{\infty}, \ldots$ are arbitrary subsequences of $\{m_{j,1}\}_{j=1}^{\infty}, \{m_{j,2}\}_{j=1}^{\infty}, \ldots$ respectively, and \mathcal{U}, \mathcal{V} are open sets in \mathcal{X}, satisfying

$$T_1^{m_{k,1}} T_2^{m_{k,2}} \ldots (\mathcal{U}) \cap \mathcal{V} \neq \phi$$

for any $m_{(k,j)} > M_j, j = 1, 2, \ldots$. So there exist (i, j), large enough for $j = 1, 2, \ldots$ such that $m_{(k,i)} > M_j$ for $j = 1, 2, \ldots$ and

$$T_1^{m_{(k,1)}} T_2^{m_{(k,2)}} \ldots (\mathcal{U}) \cap \mathcal{V} \neq \phi.$$

This implies that $\{T_1^{m_{(k,1)}} T_2^{m_{(k,2)}} \ldots \}$ is hypercyclic, so the ∞-tuple $\mathcal{T} = (T_1, T_2, \ldots)$ is indeed hereditarily hypercyclic with respect to the sequences $\{m_{(k,1)}\}_{k=1}^{\infty}, \{m_{(k,2)}\}_{k=1}^{\infty}, \ldots$.

By this the proof is complete.

References

Received: May, 2012