Kaluza-Klein Cosmology with Variable G and Λ Term

R. K. Dubey
Department of Mathematics, Govt. Science P.G. College
Rewa, Madhya Pradesh, India
rkdubey2004@yahoo.co.in

Abhijeet Mitra
Department of Mathematics, Govt. P G College
Satna, Madhya Pradesh, India
abhijeetmitra2@rediffmail.com

Bijendra Kumar Singh
Department of Mathematics, Govt. P. G. College
Satna, Madhya Pradesh, India
singh.bijendrakumar@gmail.com

Abstract. In this paper we have discussed kaluza-klein higher dimensional cosmological model with variable cosmological constant (Λ) and variable gravitational constant (G) under some suitable assumptions. We obtain the exact solutions for the field equations and discussed two models. An expanding universe is found by using a relation between scalar potential and an equation of state.

Keywords: Cosmology, Kaluza-Klein higher dimension, variable gravitational coupling (G) and Cosmological Constant term (Λ).

1. INTRODUCTION

In 1926 the Swedish physicist Oskar Klein came up with some major improvements to Kaluza’s theory, at which time it became universally known as Kaluza-Klein theory[5,8]. The idea of Kaluza-Klein has been worked by a large number of people, who have found models for various phenomena in particle physics and cosmology using five dimension or more dimensions [2-3]. Kaluza-Klein achievements have shown that five dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s theory of electromagnetism. Chatterjee and Banerjee [6](1993)and Banerjee et al[1](1995) have studied Kaluza-Klein inhomogeneous cosmological model with and
without cosmological constants respectively. So far there have been many cosmological solutions dealing with higher dimensional model containing a variety of matter field. However, there is a few work in literature where variable G and Λ have considered in higher dimension[9].

A number of authors have said in favors of the dependence first expressed by Bertolami[4]and later on by several authors in different context. Recently Ray and Mukhopadhyay [7] have solved Einstein’s equation for specific dynamical models of the cosmological term in form $\Lambda = \left(\frac{R}{R} \right)$, $\Lambda = \left(\frac{R}{R} \right)$ and $\Lambda \sim \rho$ shown that the model are equivalent in the framework of flat RW space time. In this paper the implication of cosmological model with cosmological term of two different forms $\Lambda = \alpha \left(\frac{R}{R} \right)^2$ and $\Lambda = \beta \frac{R}{R}$ where α and β are free parameters, are analyzed within the framework of higher dimensional space time.

2. THE FIELD EQUATION AND ITS SOLUTION

Let us consider, 5-dimension Kulaza-klein (kk) type Robertson-walker metric

$$ds^2 = dt^2 - R^2(t) \left[\frac{dy^2}{(1-k\gamma^2)} + \gamma^2 (d\phi^2 + \sin^2 \phi d\varphi^2) + (1-k\gamma^2) d\gamma^2 \right]$$

(1)

where $R(t)$ is the scale factor and $k=0,-1$ or $+1$ the curvature parameter for flat, open and closed universe respectively .We assume the universe to be filled with matter and the distribution of matter is represented by energy-momentum tensor of a perfect fluid.

$$T_{ij} = (p+\rho)u_i u_j - pg_{ij}$$

(2)

Where ρ is the energy density of the cosmic matter and P is its pressure.

The Einstein field equations with time varying cosmological gravitational constant are given by

$$R_{ij} - \frac{1}{2} g_{ij} R = 8\pi G T_{ij} + \Lambda(t) g_{ij}$$

(3)

from (2.2) we get

$$R_{ij} - \frac{1}{2} g_{ij} R = 8\pi G [(p+\rho)u_i u_j - \rho g_{ij}] + \Lambda(t) g_{ij}$$

(4)

the above equation(2.4) for the metric(2.1) yield two independent equations.
Kaluza-Klein cosmology with variable G and Λ term

\[
6 \left(\frac{\dot{R}}{R} \right)^2 + \frac{k}{R^2} = 8 \pi G \rho + \Lambda \tag{5}
\]

\[
3 \frac{\ddot{R}}{R} + 3 \left(\frac{\dot{R}}{R} \right)^2 + \frac{k}{R^2} = -8 \pi G \rho + \Lambda \tag{6}
\]

Here equation (5) is time-time component and equation (6) is space-space component of the field equation (4). The over-dot denotes derivative w.r.t. time. Solving equation (5) and (6) we get the continuity equation.

\[
\left(\frac{\dot{R}}{R} \right)^2 + \frac{k}{R^2} = \frac{8 \pi G \rho + \Lambda}{6}
\]

We obtain \(\ddot{R} = \frac{R^2}{12} \left(8 \pi G \dot{\rho} + 8 \pi G \dot{\rho} + \dot{\Lambda} \right) + \frac{\dot{R}^2}{RR} + \frac{K \dot{R}}{RR} \) \tag{7}

Substituting the value of \ddot{R} in equation (2.6) we have the continuity equation.

\[
\dot{\rho} + \frac{G \rho}{G} + \frac{\dot{\Lambda}}{8 \pi G} + 4(p+\rho) \frac{\dot{R}}{R} = 0 \tag{8}
\]

from equation (8) we observe that energy density is not conserved for matter field due to varying nature of scalars G and Λ. Since the principle of equivalence requires only $g_{\mu \nu}$ and Λ and G should not involve. So in this case law of conservation of energy momentum holds and its shows from equation (8)

\[
\dot{\rho} + 4(p+\rho) \frac{\dot{R}}{R} = 0 \quad \text{using equation (9), equation (8)}
\]

\[
\frac{G \rho}{G} = -\frac{\dot{\Lambda}}{8 \pi G} \Rightarrow \dot{G} = -\frac{\dot{\Lambda}}{8 \pi \rho} \tag{10}
\]

using equation of state

\[
p = (\gamma-1) \rho \tag{11}
\]

where state parameter γ can take constant value +1, 4/3, 0.2 respectively for dust radiation, vacuum fluid and stiff fluid. Using (11) in equation (9) we obtain
\[\dot{\rho} + 4(\rho + (\gamma - 1)\rho) \frac{\dot{R}}{R} = 0 \quad \dot{\rho} + 4\gamma \rho \frac{\dot{R}}{R} = 0 \quad \frac{\dot{\rho}}{\rho} = -4\gamma \frac{\dot{R}}{R} \] \hspace{1cm} (12)

Integrating we obtain

\[\log \rho = -4\gamma \log R + \log b_2 \] \hspace{1cm} (13)
\[\therefore \rho = b_2 R^{-4\gamma} \]

Where \(b_2 = \rho_0 R_0^{-4\gamma} \) and suffix 0 represents the present value of parameters.

From equation (12) we get \[\frac{\dot{R}}{R} = -\frac{1}{4\gamma} \frac{\dot{\rho}}{\rho} \] \hspace{1cm} (14)

Substituting this value of \(\frac{\dot{R}}{R} \) in equation (5) we get

\[\frac{\ddot{\rho}}{\rho^2} = 16\gamma^2 \left[\frac{16\pi G}{12} + \frac{2\Lambda}{12\rho} - \frac{k}{R^2\rho} \right] \] \hspace{1cm} (15)

Again differentiating equation (15) and using equation (10)

\[\frac{2\ddot{\rho}}{\rho^3} = 3\left(\frac{\dot{\rho}}{\rho}\right)^2 = 16\gamma^2 \left[-\frac{\dot{\rho}\Lambda}{6\rho^2} - \frac{2k}{4\gamma \rho^3 R^2} - \frac{k\dot{\rho}}{R^2\rho^2} \right] \]

Above equation is obtained using equations (10 & 12) so we have

\[\frac{2\ddot{\rho}}{\rho} - 3\left(\frac{\dot{\rho}}{\rho}\right)^2 = 4\gamma^2 \left[\frac{2k - 4\gamma k}{3} \right] \] \hspace{1cm} (16)

Since from equation (14) \[\frac{\dot{R}}{R} = -\frac{1}{4\gamma} \frac{\dot{\rho}}{\rho} \]

\[\therefore H = -\frac{1}{4\gamma} \frac{\dot{\rho}}{\rho} \quad \text{As} \quad \frac{\dot{R}}{R} = \frac{\dot{R}}{R} \quad \text{is the Hubble parameter.} \]

\[2H = \frac{2}{4\gamma} \left(\frac{\ddot{\rho}}{\rho}\right) = -\frac{2}{4\gamma} \left(\frac{\dot{\rho}}{\rho}\right)^2 \] \hspace{1cm} (17)

Substituting equation (17) in equation (16) we get
\[\dot{H} + 2\gamma H^2 + \frac{(1-2\gamma)k}{R^2} - \frac{\Lambda \gamma}{3} = 0 \]

\[3 \frac{\ddot{R}}{R} + 3(2\gamma - 1) \left(\frac{\dot{R}}{R} \right)^2 + 3(2\gamma - 1) \frac{k}{R^2} = \Lambda \gamma \]

(18)

From the above equation (18) it is clear that \(\Lambda \) depends on \(\frac{\dot{R}}{R}, \frac{\dot{R}}{R}, \frac{1}{R^2}, \rho \).

2.3 DIFFERENT COSMOLOGICAL MODELS

2.3.1 Model for \(\Lambda \sim \left(\frac{\dot{R}}{R} \right)^2 \)

Let us consider \(\Lambda = \alpha H^2 \) where \(H = \frac{\dot{R}}{R} \)

\[3 \dot{H} + 6\gamma H^2 + \frac{3(1-2\gamma)k}{R^2} = \alpha H^2 \gamma \]

(19)

We consider the case when \(k=0 \) i.e. for flat universe then from equation (19)

\[3 \dot{H} = \gamma (\alpha - 6) H^2 \]

\[R = t^{\gamma/(6-\alpha)} \]

\[\Lambda = \frac{9\alpha}{\gamma^2(6-\alpha)^2} \frac{1}{t^2} \]

thus \(\Lambda \sim t^{-2} \) which is in accordance with what Bertolami (3)said

From equation (13)

\[\rho = b_2 \left(t^{\gamma/(6-\alpha)} \right)^{-4\gamma} \]

From equation (10)

\[G = \frac{9\alpha}{8\pi b_2 \gamma^2(6-\alpha)} \frac{t^{2\gamma/(6-\alpha)}}{\alpha} \]
\[G \sim t^{2\alpha/(6-a)} \]

2.3.2 Model for \(\Lambda \sim \frac{\ddot{R}}{R} \)

Let us consider \(\Lambda = \beta \frac{\ddot{R}}{R} \) then from equation (18) we have for \(k = 0 \)

\[(3-\beta \gamma) \frac{\ddot{R}}{R} + 3(2\gamma-1)R^2 = 0 \]

\[\therefore R = \frac{3(1-2\gamma)}{(3-\beta \gamma)} t^2 \]

\[\Lambda = \beta \frac{6(1-2\gamma)}{(3-\beta \gamma)} \frac{1}{t^2} = \frac{2\beta}{t^2} \therefore \Lambda \sim t^{-2} \]

\[\rho = b_2 R^{-4\gamma} = \frac{b_2}{2} \left(\frac{3(1-2\gamma)}{(3-\beta \gamma)} \right)^{-4\gamma} \]

\[G = \beta \frac{t^{8\gamma}}{2\pi b_2 \left(\frac{3(1-2\gamma)}{(3-\beta \gamma)} \right)^{-4\gamma}} \]

2.4 CONCLUSION

In this chapter we have discussed Kaluza-Klein type Robertson-walker cosmological models by considering three different forms of variable \(\Lambda \) in respect of variable \(G \) we have obtained the exact solution of the field equations.

Since \(\frac{\ddot{R}}{R} = \dot{H} + H^2 \) then \(\Lambda \sim \frac{\ddot{R}}{R} \) models can be looked as a combination of the two models i.e. \(\Lambda \sim \dot{H}, \Lambda \sim H^2 \) we observe that \(\Lambda \sim \frac{\ddot{R}}{R} \) and \(\Lambda \sim \left(\frac{\ddot{R}}{R} \right) \) models become identical when \(\dot{H} = 0 \) i.e. when \(H \) is constant. In this case we get exponential expression and hence an inflationary scenario. Thus the concept of inflation is inherent in
phenomenological model \(\Lambda \sim \frac{\dot{R}}{R} \). Moreover \(\Lambda \sim \left(\frac{\dot{R}}{R} \right)^2 \) and \(\Lambda = \frac{\ddot{R}}{R} \) models cannot exit as separate entity during inflations. By using equation of state of the form \(p = (\gamma - 1) \rho \), we have found exact solutions of the field equations for these different cases \(\Lambda = \alpha H^2, \Lambda = \beta \frac{\ddot{R}}{R} \). By selecting a simple power law expression of \(t \) for the equation of state parameter \(\gamma \) such as \(\gamma \sim t \), equivalence of models \(\Lambda \sim \left(\frac{\dot{R}}{R} \right)^2, \Lambda \sim \left(\frac{\ddot{R}}{R} \right) \) can be established in the framework of Kaluza-Klein theory.

REFERENCES

4) O. Bertolami, Nuovo Cimento 93, 36 (1986); Fortschr. Phys. 34, 829(1986)

5) O. Klein (1926). Zeils. Phys 37,895

6) S. Chatterjee, and A. Banerjee (1993), Kaluza-Klein type of inhomogeneous cosmological models, *Classical and Quantum Gravitation*, Vol. 10, L1

Received: June, 2012