Intuitionistic Fuzzy H-Ideals of BCI-Algebras with Interval Valued Membership & Non Membership Functions

N. Palaniappan, *P. S. Veerappan and **R. Devi

Professor of Mathematics, Alagappa University Karaikudi - 630 003, Tamilnadu, India palaniappan.nallappan@yahoo.com

* Department of Mathematics, K. S. R. College of Technology Tiruchengode - 637 215, Tamilnadu, India peeyesvee@yahoo.co.in

** Department of Mathematics, K.S.R. College of Engineering Tiruchengode - 637 215, Tamilnadu, India devibalaji_mohi@yahoo.com

Abstract. The purpose of this paper is to define the notion of an interval valued intuitionistic fuzzy H-ideal (briefly, an i-v IF H-ideal) of a BCI- algebra. Necessary and sufficient conditions for an i-v intuitionistic fuzzy H-ideal are stated. Cartesian product of i-v intuitionistic fuzzy ideals are discussed.

Mathematics Subject Classification: 06F35, 03G10, 03B52

Keywords: BCI-algebra, H-ideal, i-v intuitionistic fuzzy H-ideal

1. Introduction

The notion of BCK-algebras was proposed by Imai and Iseki in 1966. In the same year, Iseki [6] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. Since then numerous mathematical papers have been written investigating the algebraic properties of the BCK/BCI-algebras and their relationship with other universal structures including lattices and Boolean algebras. Fuzzy sets were initiated by Zadeh [10]. In [9], Zadeh made an

extension of the concept of a fuzzy set by an interval-valued fuzzy set(i.e., a fuzzy set with an interval valued membership function). This interval-valued fuzzy set is referred to as an i-v fuzzy set. In [9], Zadeh also constructed a method of approximate inference using his i-v fuzzy sets. In [4], Biswas defined intervalvalued fuzzy subgroups (i.e., i-v fuzzy subgroups) of Rosenfeld's nature, and investigated some elementary properties. The idea of "intuitionistic fuzzy set" was first published by Atanassov[1],[2] as a generalization of the notion of fuzzy sets. After that many researchers considered the fuzzification of ideals and subalgebras in BCK(BCI)-algebras. In this paper, using the notion of intervalvalued fuzzy set, we introduce the concept of an interval-valued intuitionistic fuzzy BCI-algebra (briefly, i-v IF subalgebra) of a BCI-algebra, and study some of their properties. Using an i-v level set of an i-v intuitionistic fuzzy set, we state a characterization of an intuitionistic fuzzy H-ideal of BCI-algebras. We prove that every intuitionistic fuzzy H-ideal of a BCI-algebra X can be realized as an i-v level H-ideal of an i-v intuitionistic fuzzy H-ideal of X. In connection with the notion of homomorphism, we study how the images and inverse images of i-v intuitionistic fuzzy H-ideal become i-v intuitionstic fuzzy H-ideal.

2. Preliminaries

Let us recall that an algebra (X, *, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:

```
1. ((x*y)*(x*z))*(z*y) = 0,
```

2.
$$(x*(x*y))*y=0$$
,

3.
$$x * x = 0$$
,

4.
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$, for all $x, y, z \in X$.

In a BCI-algebra, we can define a partial ordering " \leq " by $x \leq y$ if and only if x * y = 0. In a BCI-algebra X, the set $M = \{x \in X / 0 * x = 0\}$ is a subalgebra and is called the BCK-part of X. A BCI-algebra X is called proper if $X - M \neq \phi$. Otherwise it is improper. Moreover, in a BCI-algebra the following conditions hold:

5.
$$(x*y)*z = (x*z)*y$$
,

6.
$$x * 0 = 0$$
,

7. $x \le y$ imply $x * z \le y * z$ and $z * y \le z * x$,

8.
$$0*(x*y)=(0*x)*(0*y)$$
,

9.
$$0*(0*(x*y)) = 0*(y*x)$$
,

10.
$$(x*z)*(y*z) \le x*y$$
.

An intuitionistic fuzzy set A in a non-empty set X is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \setminus x \in X \},\$$

where the functions $\mu_A: X \to [0,1]$ and $\upsilon_A: X \to [0,1]$ denote the *degree* of membership (namely $\mu_A(x)$) and the *degree of non membership* (namely $\upsilon_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \upsilon_A(x) \le 1$ for all $x \in X$.

Such defined objects are studied by many authors (see for Example two journals:

1. Fuzzy Sets and 2. Notes on Intuitionistic Fuzzy Sets) and have many interesting applications not only in mathematics (See Chapter 5 in the book [2]).

For the sake of simplicity, we shall use the symbol $A = \langle \mu_A, \nu_A \rangle$ for the intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$.

Definition 2.1. A non empty subset *I* of *X* is called an ideal of *X* if it satisfies:

- 1. $0 \in I$,
 - 2. $x * y \in I$ and $y \in I$ imply $x \in I$.

Definition 2.2. A fuzzy subset μ of a BCI-algebra X is called an fuzzy ideal of X if it satisfies:

- 1. $\mu(0) \ge \mu(x)$,
- 2. $\mu(x) \ge \min \{ \mu(x * y), \mu(y) \}$, for all $x, y \in X$.

Definition 2.3. A non empty subset *I* of *X* is called an H-ideal of *X* if it satisfies:

- 1. $0 \in I$,
- 2. $x*(y*z) \in I$ and $y \in I$ imply $x*z \in I$.

Putting z = 0 in (2) then we see that every H-ideal is an ideal.

Definition 2.4. A fuzzy set μ in a BCI-algebra X is called a fuzzy H-ideal of X if

- 1. $\mu(0) \ge \mu(x)$,
- 2. $\mu(x*z) \ge \min\{\mu(x*(y*z)), \mu(y)\}.$

Definition 2.5. An IFS $A = \langle X, \mu_A, \nu_A \rangle$ in a BCI-algebra X is called an intuitionistic fuzzy ideal of X if it satisfies:

- (F1) $\mu_A(0) \ge \mu_A(x) \& \upsilon_A(0) \le \upsilon_A(x)$,
- $(F2) \ \mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\},\$
- (F3) $\upsilon_A(x) \le \max\{\upsilon_A(x * y), \upsilon_A(y)\}, \text{ for all } x, y \in X.$

Definition 2.6. An intuitionistic fuzzy set $A = \langle \mu_A, \nu_A \rangle$ of a BCI-algebra X is called an intuitionistic fuzzy H-ideal if it satisfies (F1) and

$$(F4) \ \mu_A(x*z) \ge \min \{ \mu_A(x*(y*z)), \mu_A(y) \},\$$

$$(F5) \ \upsilon_A(x*z) \le \max \{\upsilon_A(x*(y*z)), \upsilon_A(y)\}, \text{ for all } x, y, z \in X.$$

An interval-valued intuitionistic fuzzy set (briefly, i-v IFS) *A* defined on *X* is given by

 $A = \left\{ \left(x, [\mu_A^L(x), \mu_A^U(x)], [\upsilon_A^L(x), \upsilon_A^U(x)] \right) \right\}, \forall x \in X$ $\left(briefly, denoted \ by \ A = \left[(\mu_A^L, \mu_A^U), (\upsilon_A^L, \upsilon_A^U) \right] \right), \text{ Where } \ \mu_A^L, \mu_A^U \text{ are two membership functions and } \upsilon_A^L, \upsilon_A^U \text{ are two non-membership functions in } X \text{ such that }$ $\mu_A^L \leq \mu_A^U \ \& \ \upsilon_A^L \geq \upsilon_A^U, \ \forall x \in X. \ \text{Let } \ \mu_A(x) = \left[\mu_A^L, \mu_A^U \right] \& \ \ \upsilon_A(x) = \left[\upsilon_A^L, \upsilon_A^U \right], \forall x \in X$ and let D[0,1] denote the family of all closed subintervals of [0,1].

If $\mu_A^L(x) = \mu_A^U(x) = c, 0 \le c \le 1$ and if $v_A^L(x) = v_A^U(x) = k, 0 \le k \le 1$, then we have $\overline{\mu}_A(x) = [c, c] \& \overline{v}_A(x) = [k, k]$ which we also assume, for the sake of convenience, to belong to D[0,1]. Thus $\overline{\mu}_A(x) \& \overline{v}_A(x) \in [0,1], \forall x \in X$, and therefore the i-v IFS A is given by $A = \{(x, \overline{\mu}_A(x), \overline{v}_A(x))\}, \forall x \in X$, where $\overline{\mu}_A(x) : X \to D[0,1], \ \overline{v}_A(x) : X \to D[0,1].$

Now let us define what is known as refined minimum, refined maximum(briefly rmin, rmax) of two elements in D[0,1]. we also define the symbols " \leq "," \geq " and "=" in the case of two elements in D[0,1]. Consider two elements $D_1 := [a_1,b_1]$ and $D_2 := [a_2,b_2] \in D[0,1]$. Then

$$r \min(D_1, D_2) = [\min\{a_1, a_2\}, \min\{b_1, b_2\}]$$

$$r \max(D_1, D_2) = [\max\{a_1, a_2\}, \max\{b_1, b_2\}]$$

$$D_1 \geq D_2 \Leftrightarrow a_1 \geq a_2, b_1 \geq b_2; D_1 \leq D_2 \Leftrightarrow a_1 \leq a_2, b_1 \leq b_2 \text{ and } D_1 = D_2.$$

3. Interval – valued Intuitionistic Fuzzy H-ideals of BCI-algebras

Definition 3.1. An interval-valued intuitionistic fuzzy set *A* in BCI-algebra *X* is called an interval-valued intuitionistic fuzzy H-ideal of *X* if it satisfies

$$(FI_{1})\overline{\mu}_{A}(0) \geq \overline{\mu}_{A}(x), \overline{\nu}_{A}(0) \leq \overline{\nu}_{A}(x),$$

$$(FI_{2})\overline{\mu}_{A}(x*z) \geq r \min \{\overline{\mu}_{A}(x*(y*z)), \overline{\mu}_{A}(y)\},$$

$$(FI_{3})\overline{\nu}_{A}(x*z) \leq r \max \{\overline{\nu}_{A}(x*(y*z)), \overline{\nu}_{A}(y)\}.$$

Theorem 3.2. Let A be an i-v intuitionistic fuzzy H-ideal of X. If there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty}\overline{\mu}_A(x_n) = [1,1], \lim_{n\to\infty}\overline{\upsilon}_A(x_n) = [0,0] \text{ then } \overline{\mu}_A(0) = [1,1] \text{ and } \overline{\upsilon}_A(0) = [0,0].$$
Proof. Since $\overline{\mu}_A(0) \ge \overline{\mu}_A(x)$ and $\overline{\upsilon}_A(0) \le \overline{\upsilon}_A(x)$ for all $x \in X$, we have $\overline{\mu}_A(0) \ge \overline{\mu}_A(x_n)$ and $\overline{\upsilon}_A(0) \le \overline{\upsilon}_A(x_n)$, for every positive integer n. Note that

$$[1,1] \ge \overline{\mu}_A(0) \ge \lim_{n \to \infty} \overline{\mu}_A(x_n) = [1,1]; \quad [0,0] \le \overline{\nu}_A(0) \le \lim_{n \to \infty} \overline{\nu}_A(x_n) = [0,0].$$

Hence $\overline{\mu}_A(0) = [1,1]$ and $\overline{\nu}_A(0) = [0,0]$.

Lemma 3.3. An i-v intuitionistic fuzzy set $A = \left| \left\langle \mu_A^L, \mu_A^U \right\rangle, \left\langle \upsilon_A^L, \upsilon_A^U \right\rangle \right|$ in X is an i-v intuitionistic fuzzy H-ideal of X if and only if $\left\langle \mu_A^L, \mu_A^U \right\rangle$ and $\left\langle \upsilon_A^L, \upsilon_A^U \right\rangle$ are intuitionistic fuzzy ideals of X.

Proof. Since $\mu_A^L(0) \ge \mu_A^L(x)$; $\mu_A^U(0) \ge \mu_A^U(x)$; $\nu_A^L(0) \le \nu_A^L(x)$ and $\nu_A^U(0) \le \nu_A^U(x)$, therefore $\mu_A(0) \ge \mu_A^U(x)$, $\nu_A(0) \le \nu_A^U(x)$. Suppose that $\langle \mu_A^L, \mu_A^U \rangle$ and $\langle \nu_A^L, \nu_A^U \rangle$ are intuitionistic fuzzy ideal of X. Let $x, y \in X$, then

$$\overline{\mu}_{A}(x) = [\mu_{A}^{L}(x), \mu_{A}^{U}(x)]
\geq \left[\min\left\{\mu_{A}^{L}(x*y), \mu_{A}^{L}(y)\right\}, \min\left\{\mu_{A}^{U}(x*y), \mu_{A}^{U}(y)\right\}\right]
= r \min\left\{\left[\mu_{A}^{L}(x*y), \mu_{A}^{U}(x*y)\right], \left[\mu_{A}^{L}(y), \mu_{A}^{U}(y)\right]\right\}
= r \min\left\{\overline{\mu}_{A}(x*y), \overline{\mu}_{A}(y)\right\} \text{ and }
\overline{\nu}_{A}(x) = \left[\nu_{A}^{L}(x), \nu_{A}^{U}(x)\right]
\leq \left[\max\left\{\nu_{A}^{L}(x*y), \nu_{A}^{L}(y)\right\}, \max\left\{\nu_{A}^{U}(x*y), \nu_{A}^{U}(y)\right\}\right]
= r \max\left\{\left[\nu_{A}^{L}(x*y), \nu_{A}^{U}(x*y)\right], \left[\nu_{A}^{L}(y), \nu_{A}^{U}(y)\right]\right\}
= r \max\left\{\overline{\nu}_{A}(x*y), \overline{\nu}_{A}(y)\right\}.$$

Hence A is an i-v intuitionistic fuzzy ideal of X.

Conversely, assume that *A* is an i-v intuitionistic fuzzy ideal of *X*. For any $x, y \in X$, we have

$$\begin{split} \left[\mu_{A}^{L}(x), \mu_{A}^{U}(x) \right] &= \overline{\mu}_{A}(x) \\ &\geq r \min \left\{ \left[\overline{\mu}_{A}(x * y), \overline{\mu}_{A}(y) \right] \right\} \\ &= r \min \left\{ \left[\mu_{A}^{L}(x * y), \mu_{A}^{U}(x * y) \right] \left[\mu_{A}^{L}(y), \mu_{A}^{U}(y) \right] \right\} \\ &= \left[\min \left\{ \mu_{A}^{L}(x * y), \mu_{A}^{L}(y) \right\}, \min \left\{ \mu_{A}^{U}(x * y), \mu_{A}^{U}(y) \right\} \right] \end{split}$$

and

$$\begin{aligned} \left[\upsilon_{A}^{L}(x), \upsilon_{A}^{U}(x) \right] &= \overline{\upsilon}_{A}(x) \\ &\leq r \max \left\{ \left[\overline{\upsilon}_{A}(x * y), \overline{\upsilon}_{A}(y) \right] \right\} \\ &= r \max \left\{ \left[\upsilon_{A}^{L}(x * y), \upsilon_{A}^{U}(x * y) \right] \left[\upsilon_{A}^{L}(y), \upsilon_{A}^{U}(y) \right] \right\} \\ &= \left[\max \left\{ \upsilon_{A}^{L}(x * y), \upsilon_{A}^{U}(y) \right\}, \max \left\{ \upsilon_{A}^{U}(x * y), \upsilon_{A}^{U}(y) \right\} \right] \end{aligned}$$

It follows that

$$\mu_A^L(x) \ge \min \left\{ \mu_A^L(x * y), \mu_A^L(y) \right\}$$

$$\upsilon_A^L(x) \le \max \left\{ \upsilon_A^L(x * y), \upsilon_A^L(y) \right\}$$
and
$$\mu_A^U(x) \ge \min \left\{ \mu_A^U(x * y), \mu_A^U(y) \right\}$$

$$\upsilon_A^U(x) \le \max \left\{ \upsilon_A^U(x * y), \upsilon_A^U(y) \right\}$$

Hence $\langle \mu_A^L, \mu_A^U \rangle$ and $\langle \nu_A^L, \nu_A^U \rangle$ are intuitionistic fuzzy ideals of X.

Theorem 3.4. Every i-v intuitionistic fuzzy H-ideal of a BCI-algebra *X* is an i-v intuitionistic fuzzy ideal.

Proof. Let $A = \left[\left\langle \mu_A^L, \mu_A^U \right\rangle, \left\langle \nu_A^L, \nu_A^U \right\rangle \right]$ be an i-v intuitionistic fuzzy H-ideal of X, where $\left\langle \mu_A^L, \mu_A^U \right\rangle$ and $\left\langle \nu_A^L, \nu_A^U \right\rangle$ are intuitionistic fuzzy H-ideals of X. Thus $\left\langle \mu_A^L, \mu_A^U \right\rangle$ and $\left\langle \nu_A^L, \nu_A^U \right\rangle$ are intuitionistic fuzzy H-ideals of X. Hence by lemma 3.3, A is an i-v intuitionistic fuzzy ideal of X.

Theorem 3.5. Let *A* be an intuitionistic fuzzy ideal of a BCI-algebra *X*. If $\overline{\mu}_A(x * y) \ge \overline{\mu}_A(x)$ and $\overline{\upsilon}_A(x * y) \le \overline{\upsilon}_A(x)$ for all $x, y \in X$, then *A* is an i-v intuitionistic fuzzy H-ideal of *X*.

For all $x, y, z \in X$. Hence A is an i-v intuitionistic fuzzy H-ideal of X.

Proof. Since A is an i-v intuitutionistic fuzzy ideal of X, by hypothesis we have $r \min\{\overline{\mu}_A(x*(y*z)), \overline{\mu}_A(y)\} \le r \min\{\overline{\mu}_A((x*z)*(y*z)), \overline{\mu}_A(y*z)\} \le \overline{\mu}_A(x*z)$ and $r \max\{\overline{\upsilon}_A(x*(y*z)), \overline{\upsilon}_A(y)\} \ge r \max\{\overline{\upsilon}_A((x*z)*(y*z)), \overline{\upsilon}_A(y*z)\} \ge \overline{\upsilon}_A(x*z)$.

Definition 3.6. An i-v intuitionistic fuzzy set A in X is called an interval-valued intuitionistic fuzzy BCI-subalgebra (briefly, i-v IF BCI-subalgebra) of X if $\overline{\mu}_A(x*y) \ge r \min\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}$ and $\overline{\nu}_A(x*y) \le r \max\{\overline{\nu}_A(x), \overline{\nu}_A(y)\}$, for all $x, y \in X$.

Theorem 3.7. Every i-v intuitionistic fuzzy H-ideal of BCI-algebra X is an i-v intuitionistic fuzzy subalgebra of X.

Proof. Let $A = \left[\left\langle \mu_A^L, \mu_A^U \right\rangle, \left\langle \upsilon_A^L, \upsilon_A^U \right\rangle \right]$ be an i-v intuitionistic fuzzy H-ideal of X, where $\left\langle \mu_A^L, \mu_A^U \right\rangle$ and $\left\langle \upsilon_A^L, \upsilon_A^U \right\rangle$ are intuitionistic fuzzy H-ideals of BCI-algebra X. Thus $\left\langle \mu_A^L, \mu_A^U \right\rangle$ and $\left\langle \upsilon_A^L, \upsilon_A^U \right\rangle$ are intuitionistic fuzzy subalgebra of X. Hence, A is an i-v intuitionistic fuzzy subalgebra of X.

4. Cartesian product of i- v Intuitionistic Fuzzy H-ideals

Definition 4.1. An intuitionistic fuzzy relation A on any set A is a intuitionistic fuzzy subset A with a membership function $\Omega_A: X \times X \to [0,1]$ and non membership function $\Psi_A: X \times X \to [0,1]$.

Lemma 4.2. Let $\overline{\mu}_A$ and $\overline{\mu}_B$ be two membership functions and $\overline{\upsilon}_A$ and $\overline{\upsilon}_B$ be two non membership functions of each $x \in X$ to the i-v subsets A and B, respectively. Then $\mu_A \times \mu_B$ is membership function and $\upsilon_A \times \upsilon_B$ is non membership function of each element $(x, y) \in X \times X$ to the set $A \times B$ and defined by $(\overline{\mu}_A \times \overline{\mu}_B)(x, y) = r \min \{\overline{\mu}_A(x), \overline{\mu}_B(y)\}$ and $(\overline{\upsilon}_A \times \overline{\upsilon}_B)(x, y) = r \max \{\overline{\upsilon}_A(x), \overline{\upsilon}_B(y)\}$.

Definition 4.3. Let $A = \left[\left\langle \mu_A^L, \mu_A^U \right\rangle, \left\langle \upsilon_A^L, \upsilon_A^U \right\rangle \right]$ and $B = \left[\left\langle \mu_B^L, \mu_B^U \right\rangle, \left\langle \upsilon_B^L, \upsilon_B^U \right\rangle \right]$ be two i-v intuitionistic fuzzy subsets in a set X. the Cartesian product of $A \times B$ is defined by $A \times B = \left\{ \left((x, y), \overline{\mu}_A \times \overline{\mu}_B, \overline{\upsilon}_A \times \overline{\upsilon}_B \right); \forall x, y \in X \times X \right\}$ where $A \times B : X \times X \to D[0,1]$.

Theorem 4.4. Let $A = \left[\left\langle \mu_A^L, \mu_A^U \right\rangle, \left\langle \upsilon_A^L, \upsilon_A^U \right\rangle \right]$ and $B = \left[\left\langle \mu_B^L, \mu_B^U \right\rangle, \left\langle \upsilon_B^L, \upsilon_B^U \right\rangle \right]$ be two i-v intuitionistic fuzzy subsets in a set X, then $A \times B$ is an i-v intuitionistic fuzzy Hideal of $X \times X$.

Proof. Let $(x, y) \in X \times X$, then by definition

$$(\overline{\mu}_{A} \times \overline{\mu}_{B})(0,0) = r \min \{\overline{\mu}_{A}(0), \overline{\mu}_{B}(0)\}$$

$$= r \min \{ [\mu_{A}^{L}(0), \mu_{A}^{U}(0)], [\mu_{B}^{L}(0), \mu_{B}^{U}(0)] \}$$

$$= [\min \{\mu_{A}^{L}(0), \mu_{B}^{L}(0)\}, \min \{\mu_{A}^{U}(0), \mu_{B}^{U}(0)\}]$$

$$\geq [\min \{\mu_{A}^{L}(x), \mu_{B}^{L}(y)\}, \min \{\mu_{A}^{U}(x), \mu_{B}^{U}(y)\}]$$

$$= r \min \{ [\mu_{A}^{L}(x), \mu_{A}^{U}(x)], [\mu_{B}^{L}(y), \mu_{B}^{U}(y)] \}$$

$$= r \min \{\overline{\mu}_{A}(x), \overline{\mu}_{B}(y)\}$$

$$= r \min \{\overline{\mu}_{A}(x), \overline{\mu}_{B}(y)\}$$

$$= (\overline{\mu}_{A} \times \overline{\mu}_{B})(x, y)$$
and
$$(\overline{\upsilon}_{A} \times \overline{\upsilon}_{B})(0, 0) = r \max \{\overline{\upsilon}_{A}(0), \overline{\upsilon}_{B}(0)\}, [\upsilon_{B}^{L}(0), \upsilon_{B}^{U}(0)] \}$$

$$= [\max \{[\upsilon_{A}^{L}(0), \upsilon_{A}^{U}(0)], [\upsilon_{B}^{L}(0), \upsilon_{B}^{U}(0)]\}$$

$$\leq [\max \{\upsilon_{A}^{L}(x), \upsilon_{B}^{L}(y)\}, \max \{\upsilon_{A}^{U}(x), \upsilon_{B}^{U}(y)\}]$$

$$= r \max \{[\upsilon_{A}^{L}(x), \upsilon_{B}^{U}(x)], [\upsilon_{B}^{L}(y), \upsilon_{B}^{U}(y)]\}$$

$$= r \max \{[\upsilon_{A}^{L}(x), \overline{\upsilon}_{B}(y)\}, [\upsilon_{B}^{L}(y), \upsilon_{B}^{U}(y)]\}$$

$$= r \max \{\overline{\upsilon}_{A}(x), \overline{\upsilon}_{B}(y)\}$$

$$= (\overline{\upsilon}_{A} \times \overline{\upsilon}_{B})(x, y)$$

Therefore (FI_2) holds.

Now, for all $x, y, z \in X$, we have

$$\begin{split} &(\overline{\mu}_{A} \times \overline{\mu}_{B})((x, x') * (z, z') \\ &= (\overline{\mu}_{A} \times \overline{\mu}_{B})(x * z, x' * z') \\ &= r \min \{\mu_{A}(x * z), \mu_{B}(x' * z')\} \\ &\geq r \min \{r \min [\overline{\mu}_{A}(x * (y * z)), \overline{\mu}_{A}(y)], \min [\overline{\mu}_{B}(x' * (y' * z')), \overline{\mu}_{B}(y')] \} \\ &= r \min \{ \min \{\mu_{A}^{L}(x * (y * z)), \mu_{A}^{L}(y)\}, \min \{\mu_{A}^{U}(x * (y * z)), \mu_{A}^{U}(y)\} \} \\ &= r \min \{ \min \{\mu_{A}^{L}(x * (y * z)), \mu_{B}^{L}(x' * (y' * z'))\}, \min \{\mu_{A}^{U}(x * (y * z')), \mu_{B}^{U}(y')\} \} \} \\ &= \left[\min \{ \min \{\mu_{A}^{L}(x * (y * z)), \mu_{B}^{L}(x' * (y' * z'))\}, \min \{\mu_{A}^{L}(y), \mu_{B}^{L}(y')\} \} \right] \\ &= r \min \{ (\overline{\mu}_{A} \times \overline{\mu}_{B})(x * (y * z)), \mu_{B}^{U}(x * (y' * z'))\}, (\overline{\mu}_{A} \times \overline{\mu}_{B})(y, \mu_{B}^{U}(y')) \} \} \\ &= r \min \{ (\overline{\mu}_{A} \times \overline{\mu}_{B})(x * (y * z)), (x' * (y' * z'))), (\overline{\mu}_{A} \times \overline{\mu}_{B})(y, y') \} . \\ \text{Also,} \\ &(\overline{\nu}_{A} \times \overline{\nu}_{B})((x, x') * (z, z') \\ &= (\overline{\nu}_{A} \times \overline{\nu}_{B})(x * z, x' * z') \\ &= r \max \{\nu_{A}(x * z), \nu_{B}(x' * z') \} \\ &\leq r \max \{r \max \{\nu_{A}(x * z), \nu_{B}(x' * z')\}, \overline{\nu}_{A}(y)\}, \max \{\nu_{A}^{U}(x * (y * z)), \nu_{A}^{U}(y)\} \} \\ &= r \max \{ [\max \{\nu_{A}^{L}(x * (y * z)), \nu_{B}^{L}(y')\}, \max \{\nu_{A}^{U}(x * (y' * z')), \nu_{B}^{U}(y')\} \} \} \\ &= \left[\max \{\max \{\nu_{A}^{L}(x * (y * z)), \nu_{B}^{L}(x' * (y' * z'))\}, \max \{\nu_{A}^{U}(y), \nu_{B}^{U}(y')\} \} \right] \\ &= \left[\max \{\max \{\nu_{A}^{L}(x * (y * z)), \nu_{B}^{U}(x' * (y' * z'))\}, \max \{\nu_{A}^{U}(y), \nu_{B}^{U}(y')\} \} \right] \\ &= \left[\max \{\max \{\nu_{A}^{L}(x * (y * z)), \nu_{B}^{U}(x' * (y' * z'))\}, \max \{\nu_{A}^{U}(y), \nu_{B}^{U}(y')\} \} \right] \\ &= \left[\max \{\max \{\nu_{A}^{L}(x * (y * z)), \nu_{B}^{U}(x' * (y' * z'))\}, \max \{\nu_{A}^{U}(y), \nu_{B}^{U}(y')\} \} \right] \\ &= \left[\min \{\max \{\nu_{A}^{U}(x * (y * z)), \nu_{B}^{U}(x' * (y' * z'))\}, \max \{\nu_{A}^{U}(y), \nu_{B}^{U}(y')\} \} \right] \\ &= \left[\min \{\min \{\mu_{A}^{U}(x * (y * z)), \nu_{B}^{U}(x * (y' * z'))\}, \max \{\nu_{A}^{U}(y), \nu_{B}^{U}(y')\} \} \right] \\ &= \left[\min \{\min \{\mu_{A}^{U}(x * (y * z)), \nu_{B}^{U}(x * (y * z'))\}, \mu_{A}^{U}(y * (y' * z')) \right] \\ &= \left[\min \{\mu_{A}^{U}(x * (y * z)), \nu_{B}^{U}(x * (y * z'))\}, \mu_{A}^{U}(x * (y * z')), \nu_{B}^{U}(y * (y' * z')) \right] \\ &= \left[\min \{\mu_{A}^{U}(x * (y * z)), \nu_{B}^{U}(x * (y * z')), \nu_{B}^{U}(x * (y * z')) \right] \\ &= \left[\min \{\mu_{A}^{U}(x * (y * z), \mu_{$$

= $r \max \{ (\overline{\upsilon}_A \times \overline{\upsilon}_B) ((x * (y * z)), (x' * (y' * z'))), (\overline{\upsilon}_A \times \overline{\upsilon}_B) (y, y') \}$. Hence $A \times B$ is an i-v intuitionistic fuzzy H-ideal of $X \times X$.

Definition 4.5. Let μ_B , υ_B respectively, be an i-v membership and non membership function of each element $x \in X$ to the set B. Then strongest i-v intuitionistic fuzzy set relation on X, that is a membership function relation $\overline{\mu}_A$ on $\overline{\mu}_B$ and non membership function relation $\overline{\upsilon}_A$ on $\overline{\upsilon}_B$ and μ_{A_B} , υ_{A_B} whose i-v membership and non membership function, of each element $(x, y) \in X \times X$ and defined by

$$\overline{\mu}_{A_{B}}(x, y) = r \min \{ \overline{\mu}_{B}(x), \overline{\mu}_{B}(y) \} \& \overline{\upsilon}_{A_{B}}(x, y) = r \max \{ \overline{\upsilon}_{B}(x), \overline{\upsilon}_{B}(y) \}$$

Definition 4.6. Let $B = \left[\left\langle \mu_B^L, \mu_B^U \right\rangle, \left\langle \upsilon_B^L, \upsilon_B^U \right\rangle \right]$ be an i-v subset in a set X. Then the strongest i-v intuitionistic fuzzy relation on X that is a i-v A on B is A_B and defined by,

 $A_{B} = \left[\left\langle \mu_{A_{B}}^{L}, \mu_{A_{B}}^{U} \right\rangle, \left\langle \nu_{A_{B}}^{L}, \nu_{A_{B}}^{U} \right\rangle \right].$

Theorem 4.7. Let $B = \left[\left\langle \mu_B^L, \mu_B^U \right\rangle, \left\langle \upsilon_B^L, \upsilon_B^U \right\rangle \right]$ be an i-v subset in a set X and $A_B = \left[\left\langle \mu_{A_B}^L, \mu_{A_B}^U \right\rangle, \left\langle \upsilon_{A_B}^L, \upsilon_{A_B}^U \right\rangle \right]$ be the strongest i-v intuitionistic fuzzy relation on X. Then B is an i-v intuitionistic H-ideal of X if and only if A_B is i-v intuitionistic fuzzy H-ideal of $X \times X$.

Proof. Let B be an i-v intuitionistic fuzzy H-ideal of X. Then

$$\overline{\mu}_{A_{B}}(0,0) = r \min\{\overline{\mu}_{B}(0), \overline{\mu}_{B}(0)\} \ge r \min\{\overline{\mu}_{B}(x), \overline{\mu}_{B}(y)\} = \overline{\mu}_{A_{B}}(x,y) \text{ and } \overline{\upsilon}_{A_{B}}(0,0) = r \max\{\overline{\upsilon}_{B}(0), \overline{\upsilon}_{B}(0)\} \le r \max\{\overline{\upsilon}_{B}(x), \overline{\upsilon}_{B}(y)\} = \overline{\upsilon}_{A_{B}}(x,y) \text{ for all } (x,y) \in X \times X.$$

On the other hand

$$\overline{\mu}_{A_B}((x_1, x_2) * (z_1, z_2)) = \overline{\mu}_{A_B}(x_1 * z_1, x_2 * z_2)$$

$$= r \min \{\overline{\mu}_B(x_1 * z_1), \overline{\mu}_B(x_2 * z_2)\}$$

$$\geq r \min \left\{ r \min \left\{ \frac{1}{\mu_B} (x_1 * (y_1 * z_1)), \frac{1}{\mu_B} (y_1) \right\}, r \min \left\{ \frac{1}{\mu_B} (x_2 * (y_2 * z_2)), \frac{1}{\mu_B} (y_2) \right\} \right\}$$

$$= r \min \left\{ r \min \left\{ \overline{\mu}_{B}(x_{1} * (y_{1} * z_{1})), \overline{\mu}_{B}(x_{2} * (y_{2} * z_{2})) \right\}, r \min \left\{ \overline{\mu}_{B}(y_{1}), \overline{\mu}_{B}(y_{2}) \right\} \right\}$$

$$= r \min \left\{ \overline{\mu}_{A_{B}}(x_{1} * (y_{1} * z_{1}), x_{2} * (y_{2} * z_{2})), \overline{\mu}_{A_{B}}(y_{1}, y_{2}) \right\}$$

$$= r \min \left\{ \overline{\mu}_{A_{B}}((x_{1}, x_{2}) * ((y_{1}, y_{2}) * (z_{1}, z_{2}))), \overline{\mu}_{A_{B}}(y_{1}, y_{2}) \right\}$$

Also,

$$\overline{v}_{A_B}((x_1, x_2) * (z_1, z_2)) = \overline{v}_{A_B}(x_1 * z_1, x_2 * z_2)
= r \max \{\overline{v}_B(x_1 * z_1), \overline{v}_B(x_2 * z_2)\}$$

$$\leq r \max \left\{ r \max \left\{ \overline{v}_B(x_1 * (y_1 * z_1)), \overline{v}_B(y_1) \right\}, r \max \left\{ \overline{v}_B(x_2 * (y_2 * z_2)), \overline{v}_B(y_2) \right\} \right\}$$

$$= r \max \left\{ r \max \left\{ \overline{\upsilon}_{B}(x_{1} * (y_{1} * z_{1})), \overline{\upsilon}_{B}(x_{2} * (y_{2} * z_{2})) \right\}, r \max \left\{ \overline{\upsilon}_{B}(y_{1}), \overline{\upsilon}_{B}(y_{2}) \right\} \right\}$$

$$= r \max \left\{ \overline{\upsilon}_{A_{B}}(x_{1} * (y_{1} * z_{1}), x_{2} * (y_{2} * z_{2})), \overline{\upsilon}_{A_{B}}(y_{1}, y_{2}) \right\}$$

$$= r \max \left\{ \overline{\upsilon}_{A_{B}}((x_{1}, x_{2}) * ((y_{1}, y_{2}) * (z_{1}, z_{2}))), \overline{\upsilon}_{A_{B}}(y_{1}, y_{2}) \right\}$$

For all (x_1, x_2) , (y_1, y_2) , (z_1, z_2) in $X \times X$. Hence A_B is an i-v intuitionistic fuzzy Hideal of $X \times X$.

Conversely, let A_B be an i-v intuitionistic fuzzy H-ideal of $X \times X$. Then for all $(x, x) \in X \times X$, we have

$$r \min\{\overline{\mu}_{B}(0), \overline{\mu}_{B}(0)\} = \overline{\mu}_{A_{B}}(0,0) \ge \overline{\mu}_{A_{B}}(x,x) = r \min\{\overline{\mu}_{B}(x), \overline{\mu}_{B}(x)\}$$

$$(or) \overline{\mu}_{B}(0) \ge \overline{\mu}_{B}(x) \text{ and } r \max\{\overline{\upsilon}_{B}(0), \overline{\upsilon}_{B}(0)\} = \overline{\upsilon}_{A_{B}}(0,0) \le \overline{\upsilon}_{A_{B}}(x,x) = r \max\{\overline{\upsilon}_{B}(x), \overline{\upsilon}_{B}(x)\}$$

$$(or) \overline{\upsilon}_{B}(0) \le \overline{\upsilon}_{B}(x) \text{ for all } x \in X. \text{ Now, let } (x_{1}, x_{2}), (y_{1}, y_{2}), (z_{1}, z_{2}) \in X \times X, \text{ then } r \min\{\overline{\mu}_{B}(x_{1} * z_{1}), \overline{\mu}_{B}(x_{2} * z_{2})\}$$

$$= \overline{\mu}_{A_{B}}(x_{1} * z_{1}, x_{2} * z_{2})$$

$$= \overline{\mu}_{A_{B}}((x_{1}, x_{2}) * (z_{1}, z_{2}))$$

$$\ge r \min\{\overline{\mu}_{A_{B}}(x_{1} * (x_{1}, x_{2}) * ((y_{1}, y_{2}) * (z_{1}, z_{2}))), \overline{\mu}_{A_{B}}(y_{1}, y_{2})\}$$

$$= r \min\{\overline{\mu}_{A_{B}}(x_{1} * (y_{1} * z_{1}), x_{2} * (y_{2} * z_{2})), \overline{\mu}_{A_{B}}(y_{1}, y_{2})\}$$

$$= r \min\{r \min\{\overline{\mu}_{B}(x_{1} * (y_{1} * z_{1})), \overline{\mu}_{B}(y_{1})\}, r \min\{\overline{\mu}_{B}(x_{2} * (y_{2} * z_{2})), \overline{\mu}_{B}(y_{2})\}\}$$
Also,
$$r \max\{\overline{\upsilon}_{A_{B}}(x_{1} * z_{1}), \overline{\upsilon}_{B}(x_{2} * z_{2})\}$$

$$= \overline{\upsilon}_{A_{B}}(x_{1} * z_{1}), \overline{\upsilon}_{B}(x_{2} * z_{2})\}$$

$$= \overline{\upsilon}_{A_{B}}(x_{1} * z_{1}), \overline{\upsilon}_{B}(x_{2} * z_{2})\}$$

$$= r \max\{\overline{\upsilon}_{A_{B}}(x_{1} * (y_{1} * z_{1}), x_{2} * (y_{2} * z_{2})), \overline{\upsilon}_{A_{B}}(y_{1}, y_{2})\}$$

$$= r \max\{\overline{\upsilon}_{A_{B}}(x_{1} * (y_{1} * z_{1}), x_{2} * (y_{2} * z_{2})), \overline{\upsilon}_{A_{B}}(y_{1}, y_{2})\}$$

$$= r \max\{r \max\{\overline{\upsilon}_{A_{B}}(x_{1} * (y_{1} * z_{1}), x_{2} * (y_{2} * z_{2})), \overline{\upsilon}_{A_{B}}(y_{1}, y_{2})\}$$

$$= r \max\{r \max\{\overline{\upsilon}_{B}(x_{1} * (y_{1} * z_{1})), \overline{\upsilon}_{B}(y_{1})\}, r \max\{\overline{\upsilon}_{B}(x_{2} * (y_{2} * z_{2})), \overline{\upsilon}_{B}(y_{2})\}\}$$

$$= r \max\{r \max\{\overline{\upsilon}_{B}(x_{1} * (y_{1} * z_{1})), \overline{\upsilon}_{B}(y_{1})\}, r \max\{\overline{\upsilon}_{B}(x_{1} * (y_{1} * z_{1})), \overline{\upsilon}_{B}(y_{1})\}, \overline{\mu}_{B}(y_{1})\}, \overline{\mu}_{B}(y_{1})\}$$

$$= r \max\{\overline{\upsilon}_{A_{B}}(x_{1} * z_{1}), \overline{\upsilon}_{B}(y_{1})\}, \overline{\upsilon}_{B}(y_{1})\}, \overline{\upsilon}_{B}(y_{1})\}, \overline{\upsilon}_{B}(y_{1})\}, \overline{\upsilon}_{B}(y_{1})\}, \overline{\upsilon}_{B}(y_{1})\}, \overline{\upsilon}_{B}(y_{1})\}, \overline{\upsilon}_{B}(y_{1})\}$$

$$= r \max\{\overline{\upsilon}_{A_{B}}(x_{1} * z_{1}), \overline{$$

References

[1] K.T. Atanassov, *Intuitionistic Fuzzy sets, Fuzzy Sets and systems*, 20(1986), 87-96.

Therefore *B* is an i-v intuitionistic fuzzy H-ideal of *X*.

- [2] K.T. Atanassov, *Intuitionistic fuzzy sets. Theory and Applications*, Studies in Fuzziness and Soft Computing, 35. Heidelberg; Physica-Verlag 1999.
- [3] P.Bhattacharya, N.P. Mukherjee, *Fuzzy relations and fuzzy groups*, Inform. Sci. 36(1985)267-282.

- [4] R.Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy Sets and Systems 63(1994), no.1, 87-90.
- [5] S.M. Hong, Y.B Jun, S.J. Kim and G.I. Kim, Fuzzy BCI-Subalgebras With Interval-Valued Membership Functions, Math Japonica, 40(2)(1993) 199-202.
- [6] K.Iseki, An algebra related with a propositional calculus, Proc, Japan Acad. 42(1966), 26 29.
- [7] H.M. Khalid, B. Ahmad, Fuzzy H-ideals in BCI-algebras, Fuzzy Sets and Systems 101(1999)153 158.
- [8] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl.35(1971) 512 517.
- [9] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. I, Information Sci. 8(1975), 199 249.
- [10] L.A. Zadeh, *Fuzzy sets*, Inform. Control 8 (1965)338 353.

Received: June, 2012