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Abstract

As in [2], our goal in this article is to write some more prominent and
fundamental identities regarding Fibonacci numbers as binomial sums.
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1. Introduction

The most well-known linear homogeneous recurrence relation of order two

with constant coefficients is

Fn+2 = Fn+1 + Fn, where F0 = 0, F1 = 1, and n ≥ 0.

This recurrence relation produces the most popular and widely-used integer

sequence 0, 1, 1, 2, 3, 5, 8, 13, ..., namely, the famous Fibonacci sequence. As

in [2], to facilitate rapid numerical calculations of identities pertaining to Fi-

bonacci numbers we write some of these fundamental identities as binomial

sums.

Hundreds of Fibonacci identities have been developed over the centuries

by numerous mathematicians and number enthusiasts. They have been pub-

lished in various journals and books for at least the past two centuries. The

Fibonacci Quarterly is a good source for those Fibonacci identities that have

been published since 1962. An impressive collection of over 200 known Fi-

bonacci identities, and in most cases along with the name of the original author,

can be found in [15], by Thomas Koshy. Another source for some well-known

Fibonacci identities is [4], by Marjorie Bicknel and Verner E. Hoggatt. Like

many ideas in mathematics it may not be possible to find the true and genuine
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author of some of the Fibonacci identities. However, the following individuals

authored at least one of the identities that we have presented in this paper: R.

H. Anglin [1], G. Candido [5], L. Carlitz [6], J. Ginsburg [7], H. W. Gould [8],

R. L. Graham [9], J. H. Halton [10], V. E. Hoggatt Jr. [11, 12], V. E. Hoggatt

Jr. and G. E. Bergum [13], J. A. H. Hunter [14], T. Koshy [15-17], D. Lind

[18], P. Mana [19], G. C. Padilla [20, 21], C. B. A. Peck [22], C. W. Raine [23],

K. S. Rao [24], R. S. Seamons [25], M. N. S. Swamy [27, 28], G. Wulczyn [29],

C. C. Yalavigi [30], D. Zeitlin and F. D. Parker [31].

2. Identities

It is known that the left-hand side of Fibonacci identities in Theorems 2.2-

2.7 can be written as a (power of a ) single Fibonacci number. We acknowledge

that we have not independently verified the validity of some of these identities.

To proceed, first we recall the following theorem from [1].

Theorem 2.1 [1]. If Fn is any Fibonacci number, then
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, n ≥ 0.

To prove Theorems 2.2-2.7 we can simply use Theorem 2.1, and the fact

that each Fibonacci identity on the left-hand side can be written as a (power

of a ) single Fibonacci number. Or, we could use the principle of mathemati-

cal induction, combinatorial arguments, or just simple algebra to prove these

theorems. However, we caution the reader that some of these identities have

been somewhat modified to fit a desired format and they may not look exactly

as they appear in the literature.

Theorem 2.2.
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Theorem 2.3.
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Theorem 2.4.
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Theorem 2.5.
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Theorem 2.7.
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3. Conclusion

Out of hundreds of Fibonacci identities that have been developed over the

centuries, we have presented just a sample of known Fibonacci identities as

binomial sums here and in [2]. Also, we are hoping that these two articles may

serve as a catalyst for the reader to write her/his favorite Fibonacci identities

as binomial sums. Additionally, in a forthcoming article we will present some

other prominent identities involving Lucas or Lucas and Fibonacci numbers as

binomial sums.
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