Viscosity Approximation Methods of Common Fixed Points for an Infinite Family of Asymptotically Nonexpansive Mappings1

Hongping Luo and Yuanheng Wang

Department of Mathematics
Zhejiang Normal University
Jinhua 321004, P.R. China
luohongping1987@163.com
yhwang@zjnu.cn

Abstract

The aim of this paper is to prove a new iterative sequence \(\{x_n\} \) under some sufficient and necessary conditions converges strongly to a common fixed point of asymptotically nonexpansive mappings \(\{T_i\}_{i=1}^{\infty} \) by using viscosity approximation methods. Our results extend and improve some recent results.

Mathematics Subject Classification: 47H09, 47H10

Keywords: asymptotically nonexpansive mapping; fixed point; viscosity approximation

1 Introduction

Assume that \(E \) is a real Banach space, \(E^* \) is the dual space of \(E \), \(J : E \to 2^{E^*} \) is the normalized duality mapping defined by

\[
J(x) = \{f \in E^*: \langle x, f \rangle = ||x||^2 = ||f||^2\}, x \in E.
\]

The space \(E \) is said to have a Gateaux differentiable norm, if the limit

\[
\lim_{t \to 0} \frac{||x + ty|| - ||x||}{t}
\]

exists for each \(y \) and any \(x \) in its unit sphere \(U = \{x \in E : ||x|| = 1\}\).

1This work was supported by NSFC (11071169) and ZJNSF (Y6100696).
A Banach space E whose norm is uniformly Gateaux differentiable, then the duality map J is single-valued and norm-to-weak* uniformly continuous on bounded sets of E.

Recently, many authors have considered the common fixed points of a family of the nonexpansive mappings in Banach space. Some people show by using viscosity approximation methods and obtain some good results[1–4].

In 2008, Zhao[2] proved the following conclusion:

Let E be a uniformly smooth Banach space, $f \in \prod \mathcal{C}$, T_1, T_2, \ldots, T_N be a finite family of nonexpansive mappings of C into itself, such that the set $\cap_{i=1}^{N} F(T_i)$ is nonempty. Under some sufficient conditions, the iterative sequence $\{x_n\}$ defined by (1) converges strongly to a common fixed point of T_1, T_2, \ldots, T_N.

\begin{align*}
\begin{cases}
y_n = \beta_{n+1}x_n + (1 - \beta_{n+1})T_{n+1}x_n, & n \geq 0, \\
x_{n+1} = \alpha_{n+1}f(x_n) + (1 - \alpha_{n+1})T_{n+1}y_n, & n \geq 0.
\end{cases}
\end{align*}

The nonexpansive mapping is a special asymptotically nonexpansive mapping. Hence, if add some conditions, we can also obtain the convergence of relative sequences. In this paper, we prove, under appropriate conditions on $K, T_i, \{\alpha_n\}$ and $\{\beta_n\}$ in $(0, 1)$, a sequence defined by

\begin{align*}
\begin{cases}
y_n = \beta_n x_n + (1 - \beta_n)T_n x_n, & n \geq 0, \\
x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n)y_n, & n \geq 0.
\end{cases}
\end{align*}

strongly to $\hat{x} \in F$, which is a solution of the following variational inequality $\langle \hat{x} - f(\hat{x}), J(\hat{x} - p) \rangle \leq 0, \forall p \in F$.

Our theorem extends[2] to the more general class of asymptotically nonexpansive mappings.

2 Preliminaries

In order to prove our result, we need the following definitions and lemmas.

Lemma 2.1[5] In a Banach space E, there holds the inequality

$$
\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x + y) \rangle, \ \forall x, y \in C, \text{where} \ j(x + y) \in J(x + y).
$$

Lemma 2.2[6] Let $\{\alpha_n\}_{n=0}^\infty$ be a sequence of nonnegative real numbers satisfying the property

$$
\alpha_{n+1} \leq (1 - \gamma_n)\alpha_n + \gamma_n \delta_n, \ n \geq 0,
$$

where $\{\gamma_n\} \subset (0, 1)$ and $\{\delta_n\}$ are such that

1. $\lim_{n \to \infty} \gamma_n = 0$, $\sum \gamma_n = \infty$;
2. $\limsup_{n \to \infty} \delta_n \leq 0$ (or $\sum |\mu_n \delta_n| < \infty$).

Then $\lim_{n \to \infty} \alpha_n = 0$.

Lemma 2.3 [7] Let \(\{x_n\}, \{y_n\} \) be bounded sequences in a Banach space \(X \), \(\{\alpha_n\} \subset [0, 1] \) satisfying \(0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1 \), suppose

\[
(1) x_{n+1} = \alpha_n x_n + (1 - \alpha_n)y_n; \quad (2) \limsup_{n \to \infty} (||y_{n+1} - y_n|| - ||x_{n+1} - x_n||) \leq 0.
\]

then \(\lim_{n \to \infty} ||y_n - x_n|| = 0 \).

Definition 1 A self-mapping \(f : C \to C \) is a contraction on \(C \), if there exists a constant \(\alpha \in (0, 1) \), such that

\[
||f(x) - f(y)|| \leq \alpha ||x - y||, \forall x, y \in C.
\]

We use \(\prod C \) to denote the collection of all contractions on \(C \).

Definition 2 [8] Let \(C \) be a nonempty convex subset of \(E \), \(T_1, T_2, \ldots, T_N \) is said to be a finite family of asymptotically nonexpansive if there exists a sequence \(\{h_n\} \subset [1, \infty) \) with \(\lim_{n \to \infty} h_n = 1 \) such that

\[
||T^n_i x - T^n_i y|| \leq h_n ||x - y||, \forall x, y \in C, i = 1, 2, \ldots, N.
\]

Denote by \(F(T_i) \) the set of fixed points of \(T_i \), which is \(F(T_i) = \{x \in C : T_i x = x\} \).

3 Main result

Now, we are ready to give our main results.

Theorem 3.1 Let \(K \) be a nonempty closed convex subset of a real Banach space \(E \) with a uniformly Gateaux differentiable norm Banach space. Let \(\{T_i\}_{i=1}^\infty \) be an infinite family of asymptotically nonexpansive mapping and uniform Lipschitzian from \(K \) into itself, \(F = \cap_{i=1}^\infty F(T_i) \neq \emptyset \) and \(f \in \prod K \).

Assume that the sequences \(\{\alpha_n\}, \{\beta_n\} \in (0, 1) \) satisfy the following conditions:

\(C1) \Sigma \alpha_n = \infty, \lim_{n \to \infty} \alpha_n = 0; \)

\(C2) 0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1; \)

\(C3) h_n - 1 = o(\alpha_n). \)

Then the sequence \(\{x_n\} \) defined by (2) converges strongly to \(\hat{x} \in F \), if and only if for any \(i \), \(\lim_{n \to \infty} ||T_i x_n - x_n|| = 0 \) holds;

And \(\hat{x} \) is a solution of the following variational inequality:

\[
\langle \hat{x} - f(\hat{x}), J(\hat{x} - p) \rangle \leq 0, \forall p \in F.
\]
Proof: Adequacy The adequacy proof is divided into five steps.

Step 1 We observe \(\{x_n\} \) is bounded. Indeed, taking a fixed point \(p \) of \(F \), we have

\[
\|y_n - p\| \leq \beta_n \|x_n - p\| + (1 - \beta_n) \|T^m_i x_n - p\| \\
\leq a_n \|x_n - p\|. \\
\|x_{n+1} - p\| \leq \alpha_n \|f(x_n) - f(p)\| + \alpha_n \|f(p) - p\| + (1 - \alpha_n) \|y_n - p\| \\
\leq \alpha_n \|x_n - p\| + (1 - \alpha_n) a_n \|x_n - p\| + \alpha_n \|f(p) - p\| \\
= (a_n - (a_n - \alpha) \alpha_n) \|x_n - p\| + \alpha_n (a_n - \alpha) \|\frac{f(p) - p}{a_n - \alpha}\| \\
\leq a_n \max \{\|x_n - p\|, \|\frac{f(p) - p}{a_n - \alpha}\|\}.
\]

Using an introduction, we have

\[
\|x_n - p\| \leq a \max \{\|x_0 - p\|, \frac{\|f(p) - p\|}{b - \alpha}\},
\]

where \(a_n = \beta_n + (1 - \beta_n) h_n \), \(a = \max \{a_n\} \), \(b = \min \{a_n\} = 1 \).

Hence \(\{x_n\} \) is bounded, so are the sets \(\{y_n\} \), \(\{f(x_n)\} \), and \(\{T^m_i x_n\} \).

Step 2 We claim that \(\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0 \).

Setting \(l_n = (1 - \alpha_n) \beta_n \), \(n \geq 1 \), it follows from (C1) and (C2) that

\(0 < \lim \inf_{n \to \infty} l_n \leq \lim \sup_{n \to \infty} l_n < 1 \).

Define \(x_{n+1} = l_n x_n + (1 - l_n) z_n \), observe that

\[
z_{n+1} - z_n = \frac{x_{n+2} - l_{n+1} x_{n+1}}{1 - l_{n+1}} - \frac{x_{n+1} - l_n x_n}{1 - l_n} \\
= \left[\alpha_{n+1} f(x_{n+1}) + (1 - \alpha_{n+1})(\beta_{n+1} x_{n+1} + (1 - \beta_{n+1}) T^m_i x_{n+1}) \right] \frac{1}{1 - l_{n+1}} \\
- \frac{l_{n+1} x_{n+1}}{1 - l_{n+1}} - \frac{\alpha_n f(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n) T^m_i x_n) - l_n x_n}{1 - l_n} \\
= \frac{\alpha_{n+1} f(x_{n+1})}{1 - l_{n+1}} - \frac{\alpha_n f(x_n)}{1 - l_n} + \frac{(1 - \alpha_{n+1})(1 - \beta_{n+1}) T^m_i x_{n+1}}{1 - l_{n+1}} \\
- \frac{(1 - \alpha_n)(1 - \beta_n) T^m_i x_n}{1 - l_n} \\
= \frac{\alpha_{n+1} f(x_{n+1})}{1 - l_{n+1}} - \frac{\alpha_n f(x_n)}{1 - l_n} + \frac{(1 - \alpha_{n+1})(1 - \beta_{n+1}) T^m_i x_{n+1}}{1 - l_{n+1}} \\
- \frac{(1 - \alpha_n)(1 - \beta_n) T^m_i x_n}{1 - l_n} \\
= \frac{\alpha_{n+1}}{1 - l_{n+1}} (f(x_{n+1}) - T^m_i x_{n+1}) - \frac{\alpha_n}{1 - l_n} (f(x_n) - T^m_i x_n) \\
+ (T^m_i x_{n+1} - T^m_i x_n).
\]
we have

$$
\| z_{n+1} - z_n \| - \| x_{n+1} - x_n \| \\
\leq \frac{\alpha_{n+1}}{1 - l_{n+1}} \| f(x_{n+1}) - T_i^{n+1} x_{n+1} \| + \frac{\alpha_n}{1 - l_n} \| f(x_n) - T_i^n x_n \| \\
+ \| T_i^{n+1} x_{n+1} - T_i^{n+1} x_n \| + \| T_i^n x_n - T_i^n x_n \| - \| x_{n+1} - x_n \| \\
= \frac{\alpha_{n+1}}{1 - l_{n+1}} (\| f(x_{n+1}) \| + \| T_i^{n+1} x_{n+1} \|) + \frac{\alpha_n}{1 - l_n} (\| f(x_n) \|) \\
+ \| T_i^n x_n \|) + (h_{n+1} - 1) \| x_{n+1} - x_n \| + h_n \| T_i^n x_n - x_n \|.
$$

Using the conclusion of step 1, by (C1), $\lim_{n \to \infty} \| T_i x_n - x_n \| = 0$ and $\lim_{n \to \infty} h_n = 1$, we obtain that $\limsup_{n \to \infty} (\| z_{n+1} - z_n \| - \| x_{n+1} - x_n \|) \leq 0$. Hence by lemma 2.3, we have $\lim_{n \to \infty} \| z_n - x_n \| = 0$.

Consequently, $\lim_{n \to \infty} \| x_{n+1} - x_n \| = \lim_{n \to \infty} (1 - l_n) \| z_n - x_n \| = 0$.

Step 3 We prove that $\lim_{n \to \infty} \| x_n - T_i^n x_n \| = 0$.

From (2), we arrive at

$$
\| y_n - x_n \| \leq \| x_n - x_{n+1} \| + \| x_{n+1} - y_n \| = \| x_n - x_{n+1} \| + \alpha_n \| f(x_n) - y_n \|.
$$

Since $\{f(x_n)\}$ and $\{y_n\}$ are bounded, by (C1) and $\lim_{n \to \infty} \| x_{n+1} - x_n \| = 0$, we get $\lim_{n \to \infty} \| y_n - x_n \| = 0$.

From $y_n = \beta_n x_n + (1 - \beta_n) T_i^n x_n$, then $\lim_{n \to \infty} \| x_n - T_i^n x_n \| = 0$.

Step 4 We show that $\langle \hat{x} - f(\hat{x}), J(\hat{x} - p) \rangle \leq 0$.

Same as [3], let $\hat{x} = \lim_{t \to 0} x_t$ with x_t being the fixed point of the contraction $x = t f(x) + (1 - t) T_i^n x$, where $t \in (0, 1)$. That is $x_t = t f(x_t) + (1 - t) T_i^n x_t$.

Thanks to lemma 2.1, we have

$$
\| x_t - x_n \|^2 = \| (1 - t)(T_i^n x_t - x_n) + t (f(x_t) - x_n) \|^2 \\
\leq (1 - t)^2 \| T_i^n x_t - x_n \|^2 + 2t \langle f(x_t) - x_n, J(x_t - x_n) \rangle \\
\leq (1 - t)^2 h_n \| x_t - x_n \|^2 + g_n(t) + 2t \langle f(x_t) - x_t, J(x_t - x_n) \rangle \\
+ 2t \langle x_t - x_n, J(x_t - x_n) \rangle,
$$

where $g_n(t) = (2h_n \| x_t - x_n \| + \| T_i^n x_n - x_n \|) \| T_i^n x_n - x_n \|$.

It follows from step 2 that $\lim_{n \to \infty} g_n(t) = 0$. Then $\langle x_t - f(x_t), J(x_t - x_n) \rangle \leq \| 1 - t \|^2 h_n \| x_t - x_n \|^2 + \frac{1}{2t} g_n(t)$, we see that $\limsup_{n \to \infty} \langle x_t - f(x_t), J(x_t - x_n) \rangle \leq \frac{1}{2} M_1$, where $M_1 \geq 0$, such that $M_1 \geq \| x_t - x_n \|^2$, $\forall t \in (0, 1), n \geq 1$.

Then

$$
\limsup_{t \to 0} \limsup_{n \to \infty} \langle x_t - f(x_t), J(x_t - x_n) \rangle \leq 0.
$$
So for any $\epsilon > 0$, $\exists \delta_1 > 0$, when $t \in (0, \delta_1)$, we get

$$\limsup_{n \to \infty} \langle x_t - f(\hat{x}), J(x_t - x_n) \rangle \leq \frac{\epsilon}{2}.$$

On the other hand, $x_t \to \hat{x}$ and from J is norm-to-norm uniformly continuous on bounded subsets of C, $\exists \delta_2 > 0$, such that when $t \in (0, \delta_2)$, we have

$$| \langle f(\hat{x}) - \hat{x}, J(x_n - \hat{x}) \rangle - \langle x_t - f(\hat{x}), J(x_t - x_n) \rangle |$$

$$\leq | \langle f(\hat{x}) - \hat{x}, J(x_n - \hat{x}) \rangle - \langle f(\hat{x}) - \hat{x}, J(x_n - x_t) \rangle | + | \langle f(\hat{x}) - \hat{x}, J(x_n - x_t) \rangle - \langle x_t - f(\hat{x}), J(x_t - x_n) \rangle |$$

$$\leq | \langle f(\hat{x}) - \hat{x}, J(x_n - \hat{x}) - J(x_n - x_t) \rangle | + \langle x_t - \hat{x}, J(x_n - x_t) \rangle \leq \frac{\epsilon}{2}.$$

Choosing $\delta = \min \{ \delta_1, \delta_2 \}, \forall t \in (0, \delta)$, we have

$$\langle u - \hat{x}, J(x_n - \hat{x}) \rangle \leq \langle x_t - u, J(x_t - x_n) \rangle + \frac{\epsilon}{2},$$

$$\limsup_{n \to \infty} \langle f(\hat{x}) - \hat{x}, J(x_n - \hat{x}) \rangle \leq \limsup_{n \to \infty} \langle x_t - f(\hat{x}), J(x_t - x_n) \rangle + \frac{\epsilon}{2} \leq \epsilon.$$

Since ϵ is chosen arbitrarily, we get $\limsup_{n \to \infty} \langle u - \hat{x}, J(x_n - \hat{x}) \rangle \leq 0$. Hence $\langle \hat{x} - f(\hat{x}), J(\hat{x} - p) \rangle \leq 0$, $\limsup_{n \to \infty} \langle f(\hat{x}) - \hat{x}, J(x_{n+1} - \hat{x}) \rangle \leq 0$ holds.

Step 5 We prove that $\lim_{n \to \infty} ||x_n - \hat{x}|| = 0$. Setting $\xi_{n+1} = \max \{ \langle f(\hat{x}) - \hat{x}, J(x_{n+1} - \hat{x}) \rangle \}$, we have $\limsup_{n \to \infty} \xi_{n+1} \leq 0$.

$$||x_{n+1} - \hat{x}||^2 = ||\alpha_n (f(x_n) - \hat{x}) + (1 - \alpha_n)(\beta_n (x_n - \hat{x}) + (1 - \beta_n)(T^n x_n - \hat{x}))||^2$$

$$\leq (1 - \alpha_n)^2 [\beta_n ||x_n - \hat{x}||^2 + (1 - \beta_n)h^2 ||x_n - \hat{x}||^2 + 2\alpha_n (f(x_n) - f(\hat{x})) J(x_{n+1} - \hat{x})]$$

$$\leq (1 - \alpha_n)^2 h^2 ||x_n - \hat{x}||^2 + 2\alpha_n ||x_n - \hat{x}|| ||x_{n+1} - \hat{x}|| + \alpha_n (f(x_n) - f(\hat{x})) J(x_{n+1} - \hat{x})$$

$$\leq (1 - \alpha_n)^2 ||x_n - \hat{x}||^2 + (1 - \alpha_n)^2 (h^2 - 1) ||x_n - \hat{x}||^2 + \alpha_n (||x_n - \hat{x}||^2 + ||x_{n+1} - \hat{x}||^2) + 2\alpha_n (f(\hat{x}) - \hat{x}, J(x_{n+1} - \hat{x})), $$

$$(1 - \alpha_n)||x_{n+1} - \hat{x}||^2 \leq (1 - 2\alpha_n + \alpha_n^2) ||x_n - \hat{x}||^2 + (h^2 - 1) ||x_n - \hat{x}||^2$$

$$+ \alpha_n ||x_n - \hat{x}||^2 + 2\alpha_n (f(\hat{x}) - \hat{x}, J(x_{n+1} - \hat{x})),$$

$$\leq (1 - 2\alpha_n + \alpha_n^2) ||x_n - \hat{x}||^2 + (\alpha_n^2 + h^2 - 1) ||x_n - \hat{x}||^2 + 2\alpha_n \xi_{n+1}.$$.
which implies that
\[
\|x_{n+1} - \hat{x}\|^2 \leq (1 - \frac{2(1 - \alpha)\alpha_n}{1 - \alpha_n\alpha})\|x_n - \hat{x}\|^2 + \frac{2(1 - \alpha)\alpha_n}{1 - \alpha_n\alpha}M_2 + \frac{1}{1 - \alpha}\xi_{n+1}
\]
\[
= (1 - \gamma_n)\|x_n - \hat{x}\|^2 + \gamma_n\delta_n,
\]
where
\[
M_2 = \sup(h_n + 1)\|x_n - \hat{x}\|^2, \gamma_n = \frac{2(1 - \alpha)\alpha_n}{1 - \alpha_n\alpha},
\]
\[
\delta_n = \frac{\alpha_n + \frac{h_n - 1}{\alpha_n}}{2(1 - \alpha)}M_2 + \frac{1}{1 - \alpha}\xi_{n+1}.
\]
Since \(\{x_n\} \) is bounded, by (C1),(C3)and step 3, we have
\[
\lim_{n \to \infty} \gamma_n = 0, \sum_{n=\infty} \gamma_n = \infty; \limsup_{n \to \infty} \delta_n \leq 0.
\]
According to lemma 2.2 ,we deduce that \(\lim_{n \to \infty} \|x_n - \hat{x}\| = 0. \)

Necessity If \(\lim_{n \to \infty} \|x_n - \hat{x}\| = 0, \) , \(\hat{x} \in F \) and \(T_i \) is uniform Lipschitzian,
\[
\lim_{n \to \infty} \|T_ix_n - x_n\| \leq \lim_{n \to \infty} \|T_ix_n - T_i\hat{x}\| + \|T_i\hat{x} - \hat{x}\| + \|\hat{x} - x_n\|
\]
\[
\leq \lim_{n \to \infty} \|T_i\hat{x} - \hat{x}\| + \lim_{n \to \infty} (L + 1)\|\hat{x} - x_n\| \leq 0.
\]

Hence the proof of Theorem 3.1 is completed. \(\square \)

Remark 1 Our paper improve[1 – 4], such as extending a finite family of nonexpansive mappings to an infinite family of asymptotically nonexpansive mappings.

References

Received: March, 2012