On Higher Order Fractional Bessel Potentials

A. S. Abedel-Rady, S. Z. Rida and F. A. Mohammed

Math. Department, Faculty of Science
South Valley University, Qena, Egypt
safwat_ahmed@hotmail.com
szagloul@yahoo.com
fowzy_abdality@yahoo.com

Abstract

The solutions of the equation

\[(I-\Delta)^{\alpha/2} u_{k,\alpha}(x) = f(x), \quad k \geq 1, \alpha > 0 \quad \text{in} \quad \mathbb{R}^n\]

where \(f \in L^2(\mathbb{R}^n) \) are investigated, fractional Bessel kernel of higher order are defined, and recurrence relations between these solutions and fractional Bessel kernel are obtained. Finally explicit formulas for the solutions when \(x \in \mathbb{R}^n, \quad m=0,1 \) are given.

Keywords: Fractional Bessel potential of higher order, fractional Bessel kernel, higher order, recurrence relations, explicit formulas

1. Introduction

This work is an extension to [1], [2] where the case \(\alpha = 2 \) was considered. We consider first \(k = 1 \), i.e.,

\[(I-\Delta)^{\alpha/2} u_{1,\alpha}(x) = f(x), \quad \alpha > 0 \quad \text{in} \quad \mathbb{R}^n\]

Then,

\[u_{1,\alpha}(x) = (I-\Delta)^{-\alpha/2} f(x) = B_{1,\alpha}(x) * f(x)\]

where from [3], [4], [5] the \(B_{1,\alpha}(x) \) fractional Bessel kernel of first order with \(\alpha > 0 \) is defined as follows

Definition

\[B_{1,\alpha}(x) = \left(\frac{1}{(4\pi)^{\alpha/2} \Gamma(\alpha/2)} \right) \int_0^\infty \exp(-\pi |x|^2/t) \exp(-t/4\pi) t^{-(\alpha+1)/2} \frac{dt}{t}\]
Also, we have the following Proposition

Proposition

For the $B_{1,\alpha}(x)$ with $\alpha > 0$, the following relations are true

I-

$$B_{1,\alpha}(x) \in L^1(\mathbb{R}^n)$$

II-

$$\hat{B}_{1,\alpha}(x) = \left(1 + 4\pi^2 |x|^2\right)^{-\alpha/2}$$

which can be verified by application of Fourier transform [4], and by using Fubini's theorem, where the Fourier transform of a function f is given by

$$\hat{f}(x) = \int_{\mathbb{R}^n} e^{-2\pi i x t} f(t) \, dt$$

Then from Eq. (4), (5), (6), and convolution theorem, we have

$$u_{1,\alpha}(x) = \left(\frac{1}{\gamma(\alpha)}\right) \int_{\mathbb{R}^n} \left[\int_0^{\infty} \exp\left(-\pi|x-y|^2/t\right) \exp\left(-t/4\pi\right) t^{-(n+\alpha)/2} \, f(y) \, dt \right] f(y) \, dy$$

$$= \int_{\mathbb{R}^n} B_{1,\alpha}(x-y) f(y) \, dy$$

(7)

Where $\alpha > 0$, and $\gamma(\alpha) = (4\pi)^{n/2} \Gamma(\alpha/2)$. Then we have the following result

Theorem (1)

Solution $u_{1,\alpha}(x)$ of Eq. (2) for $\alpha > 0$ in \mathbb{R}^n is Eq. (7)

2. **The solutions** $u_{2,\alpha}(x)$

Where $k = 2$ in Eq. (1), we have

$$(I-\Delta)^2 u_{2,\alpha}(x) = f(x) \quad \text{in} \quad \mathbb{R}^n \quad \text{where} \quad \alpha > 0, \quad f \in L^2(\mathbb{R}^n),$$

and we can write this equation in the form

$$(I-\Delta)^2 u_{2,\alpha}(x) = u_{1,\alpha}(x)$$

(9)

Then from Eq. (9), and Eq. (7), we get

$$u_{2,\alpha}(x) = \left(\frac{1}{\gamma(\alpha)}\right) \int_{\mathbb{R}^n} \left[\int_0^{\infty} \exp\left(-\pi|x-y|^2/t\right) \exp\left(-t/4\pi\right) t^{-(n+\alpha)/2} u_{1,\alpha}(y) \, dy \, dt \right] f(y) \, dy$$

(10)

by rearranging the order of integration, we get

$$u_{2,\alpha}(x) = \left(\frac{1}{\gamma(\alpha)}\right) \int_{\mathbb{R}^n} \left[\int_0^{\infty} \exp\left(-\pi|x-y|^2/\tau\right) \exp\left(-\tau/4\pi\right) \tau^{-(n+\alpha)/2} \, dt \times \int_0^{\infty} \exp\left(-\pi|\tilde{y}|^2/\tau\right) \exp\left(-\tau/4\pi\right) \tau^{-(n+\alpha)/2} \, d\tilde{y} \right] f(y) \, dy$$

$$= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} B_{1,\alpha}(x-\tilde{y}) B_{1,\alpha}(\tilde{y} - y) \, d\tilde{y} \right] f(y) \, dy$$

Thus, $u_{2,\alpha}(x) = \int_{\mathbb{R}^n} B_{2,\alpha}(x,y) f(y) \, dy = B_{2,\alpha}(x,y) \ast f(x)$

(11)
where
\[B_{2,\alpha}(x, y) = \int_{\mathbb{R}^n} B_{1,\alpha}(x - \tilde{y}) \, B_{1,\alpha}(y - \tilde{y}) \, d\tilde{y} \]
(12)

\(B_{2,\alpha} \) is called the Fractional Bessel kernel of second order. Then from Eq. (11) and Eq. (12), we have the following result

Theorem (2)

Solution \(u_{2,\alpha}(x) \) of Eq. (8) for \(\alpha > 0 \) in \(\mathbb{R}^n \) is Eq. (11), (12)

3. Recurrence relations and fractional Bessel kernel of order \(k \)

Theorem (3)

For all \(k \geq 2 \) the solution of equation

\[(I - \Delta)^{\alpha/2} u_{k,\alpha}(x) = f(x) \quad \alpha > 0 \quad \text{in} \quad \mathbb{R}^n \]

(13)
is

\[u_{k,\alpha}(x) = \int_{\mathbb{R}^n} B_{k,\alpha}(x, y) \, f(y) \, dy = B_{k,\alpha}(x, y) \ast f(x) \]

(14)

where

\[B_{k,\alpha}(x, y) = \int_{\mathbb{R}^n} B_{1,\alpha}(x - \tilde{y}) \, B_{k-1,\alpha}(\tilde{y}, y) \, d\tilde{y} \quad , \quad k \geq 3 \]

(15)
is called fractional Bessel kernel of order \(k \).

Proof

The relations (13), (14) and (15) are true for \(k = 2 \). Let these relations are true for some \(k = m \), i.e.,

\[u_{m,\alpha}(x) = B_{m,\alpha}(x, y) \ast f(x) \]

(16)
is the solution of equation

\[(I - \Delta)^{\alpha/2} u_{m,\alpha}(x) = f(x) \quad \alpha > 0 \quad \text{in} \quad \mathbb{R}^n \]

(17)

We now try to prove that relations (13) and (14) are true for some \(k = m + 1 \).

For \(k = m + 1 \), we can write Eq. (13) in the following form

\[(I - \Delta)^{\alpha/2} u_{m+1,\alpha}(x) = f(x) \quad \alpha > 0 \quad \text{in} \quad \mathbb{R}^n \]

(18)

which equivalent to the following system

\[(I - \Delta)^{\alpha/2} u_{m+1,\alpha}(x) = W(x) \]

(19)

\[(I - \Delta)^{\alpha/2} W(x) = f(x) \]

(20)

From Eq. (20), and since the relations (13) and (14) are true for some \(k = m \), we get

\[W(x) = u_{m,\alpha}(x) = B_{m,\alpha}(x, y) \ast f(x) = \int_{\mathbb{R}^n} B_{m,\alpha}(x, y) \, f(y) \, dy \]

(21)

where

\[B_{m,\alpha}(x, y) = \int_{\mathbb{R}^n} B_{1,\alpha}(x - \tilde{y}) \, B_{m-1,\alpha}(\tilde{y}, y) \, d\tilde{y} \quad , \quad m \geq 3 \]

(22)

By substituting from Eq. (21) in Eq. (19) and using (7), we get
Using (21), (22), (4) and then rearrange the order of integration, we get

\[u_{m+1,\alpha}(x) = \frac{1}{\gamma(\alpha)} \int_{-\infty}^{\infty} \left(\int_{\mathbb{R}^n} \exp\left(-\pi |x - \tilde{y}|^2 \right) \exp(-t/4\pi) t^{(-\alpha+1)/2} u_{\alpha,\alpha}(\tilde{y}) d\tilde{y} dt \right) \]

\[= \int_{\mathbb{R}^n} M_{m+1,\alpha}(x, y) f(y) dy \]

where

\[B_{m+1,\alpha}(x, y) = \int_{\mathbb{R}^n} B_{1,\alpha}(x - \tilde{y}) B_{m,\alpha}(\tilde{y}, y) d\tilde{y} \]

(23)

Then relation (14) and (15) are true for \(k = m + 1 \).

Theorem (4)

The fractional Bessel kernel \(B_{k,\alpha}(x, y), \ k \geq 2 \) is symmetric in the variables, i.e. \(B_{k,\alpha}(x, y) = B_{k,\alpha}(y, x) \).

Proof

The proof follows immediately using (12), (15), (24) using mathematical induction.

Theorem (5)

The fractional Bessel kernel \(B_{k,\alpha}(x, y) \) satisfies

\[(u_{r,\alpha} * B_{1,\alpha}) * B_{k-r-1,\alpha} = u_{r,\alpha} * (B_{1,\alpha} * B_{k-r-1,\alpha}) \]

for \(1 \leq r \leq k - 1 \)

Proof

Using (14), (24) and Th. (4), then

\[(u_{r,\alpha} * B_{1,\alpha}) * B_{k-r-1,\alpha} = \int_{\mathbb{R}^n} B_{1,\alpha}(x - \tilde{y}) u_{r,\alpha}(\tilde{y}) d\tilde{y} * B_{k-r-1,\alpha}(x, y) \]

\[= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} B_{k-r-1,\alpha}(x, y) B_{1,\alpha}(y - \tilde{y}) u_{r,\alpha}(\tilde{y}) d\tilde{y} dy \]

\[= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} B_{k-r-1,\alpha}(x, \tilde{y}) B_{1,\alpha}(\tilde{y} - y) d\tilde{y} u_{r,\alpha}(y) dy \]

\[= u_{r,\alpha}(x) * B_{k-r-1,\alpha}(x, y) = u_{r,\alpha} * (B_{k-r-1,\alpha} * B_{1,\alpha}) \]

Theorem (6)

For all \(k \geq 1 \) the equation

\[(I - \Delta)^{\alpha/2} u_{k,\alpha}(x) = f(x), \ \alpha > 0 \quad \text{in} \quad \mathbb{R}^n \]

(25)

is uniquely solvable by

\[\text{I-} \quad u_{k,\alpha}(x) = u_{k-1,\alpha} * B_{1,\alpha} \quad \text{For} \ k \geq 2 \]

(26)

\[\text{or} \quad u_{k,\alpha}(x) = u_{k-2,\alpha} * B_{2,\alpha} \quad \text{For} \ k \geq 3 \]

(27)

\[\text{II-Moreover, if} \ k \geq 2, \ \text{we have} \]

\[B_{k,\alpha} * f = u_{r,\alpha} * B_{k-r,\alpha} \quad \text{For} \ 1 \leq r \leq k - 1 \]

(28)

Proof

I-We can write Eq. (25) in the form...
On higher order fractional Bessel potentials

\[(I-\Delta)^{x/2}u_{k,\alpha}(x) = W(x)\] \hspace{1cm} (29)
\[(I-\Delta)^{x(k-1)/2}W(x) = f(x)\] \hspace{1cm} (30)

From Eq. (30), we get
\[W(x) = u_{k-1,\alpha}(x)\] \hspace{1cm} (31)

By substituting from Eq. (31) in Eq. (29) and using Eq. (3), and rearrange the order of integration, we get directly for \(k \geq 2\), that \(u_{k,\alpha}(x) = u_{k-1,\alpha} * B_{1,\alpha}\), Thus the first part of (I) is proven. We can write Eq. (25) in the form
\[(I-\Delta)^{2\alpha/2}u_{k,\alpha}(x) = W(x)\] \hspace{1cm} (32)
\[(I-\Delta)^{\alpha(k-2)/2}W(x) = f(x)\] \hspace{1cm} (33)

From Eq. (33), we get
\[W(x) = u_{k-2,\alpha}(x)\] \hspace{1cm} (34)

By substituting from Eq. (34) in Eq. (32) and using Eq. (11),(12), we get directly for \(k \geq 3\), that \(u_{k,\alpha}(x) = u_{k-2,\alpha} * B_{2,\alpha}\), Thus the second part of (I) is proven.

II-By writing Eq. (25) in the form
\[(I-\Delta)^{x/r^2}(I-\Delta)^{(k-r)/2}u_{k,\alpha}(x) = f(x)\]
Which equivalent to the following system
\[(I-\Delta)^{(k-r)/2}u_{k,\alpha}(x) = W(x)\] \hspace{1cm} (35)
\[(I-\Delta)^{x/r^2}W(x) = f(x)\] \hspace{1cm} (36)

From Eq. (36), we get
\[W(x) = u_{r,\alpha}(x)\] \hspace{1cm} (37)

By substituting from Eq. (37) in Eq. (35), we have
\[(I-\Delta)^{(k-r)/2}u_{k,\alpha}(x) = u_{r,\alpha}(x)\, ,\]
and then by using Eq. (26),for \(k \geq 2\, ,\) we can prove as follows ,for \(1 \leq r \leq k-1\, ,\) that
\[u_{r,\alpha}(x) = u_{r,\alpha} * B_{k-r,\alpha}\] \hspace{1cm} (38)

Let it is true for some \(r\, ,\) and we prove for \(r+1\, ,\) for \(1 \leq r+1 \leq k-1\, ,\) i.e. we prove that \(u_{k,\alpha}(x) = u_{r+1,\alpha} * B_{k-r-1,\alpha}\). Using theorems (6)(I),(5) and (3),(7),(12),(14),(15) we obtain
\[u_{k,\alpha}(x) = (u_{r,\alpha} * B_{1,\alpha}) * B_{k-r-1,\alpha} = u_{r,\alpha} * B_{k-r,\alpha} = B_{k,\alpha} * f\]
and (II) is proven.

4. Explicit formula for the solution \(u_{k,\alpha,m}(x)\) of:
\[(I-\Delta)^{x/k}u_{k,\alpha,m}(x) = [k]^m \text{ in } \Re^n , \, k \geq 1, \, \alpha > 0, \, m = 0, 1\] \hspace{1cm} (39)
\(1^k - k = 1, m = 0\) Then
\[(I-\Delta)^{x/2}u_{1,\alpha,0}(x) = 1\] \hspace{1cm} (40)

And
Let \(r = y - x \Rightarrow dr = dy \), then

\[
\int_{\mathbb{R}^n} \exp\left(-\pi |x-y|^2/t\right) dy = \int_{\mathbb{R}^n} \exp\left(-\pi |r|^2/t\right) dr
\]

\[
= \prod_{i=1}^{n} \int_{-\infty}^{\infty} \exp\left(-\pi r_i^2/t\right) dr_i = t^{n/2}
\]

By substituting from Eq. (42) in Eq. (41), we get

\[
u_{1,\alpha,0}(x) = \frac{1}{\gamma(\alpha)} \int_{\mathbb{R}^n} \exp\left(-\pi |r|^2/t\right) t^{\alpha/2} dt
\]

But from definition of gamma function, we have

\[
\left(\frac{1}{4\pi}\right)^{-\alpha/2} = \frac{1}{\Gamma(\alpha/2)} \int_{0}^{\infty} \exp(-t/4\pi) t^{\alpha/2} dt
\]

Then

\[
u_{1,\alpha,0}(x) = 1
\]

\[
2^\alpha - k = 2, m = 0 \text{ Then}
\]

\[
(I-\Delta)^k \nu_{2,\alpha,0}(x) = 1
\]

\[
(I-\Delta)^{\alpha/2} (I-\Delta)^{\alpha/2} \nu_{2,\alpha,0}(x) = 1
\]

By write above equation in the equivalent system

\[
(I-\Delta)^{\alpha/2} w = 1
\]

\[
(I-\Delta)^{\alpha/2} \nu_{2,\alpha,0}(x) = w
\]

From Eq. (46) and Eq. (40), we have directly

\[
w = \nu_{1,\alpha,0}(x) = 1
\]

By substituting from Eq. (48) in Eq. (47), we get

\[
(I-\Delta)^{\alpha/2} \nu_{2,\alpha,0}(x) = 1
\]

\[
u_{2,\alpha,0}(x) = (I-\Delta)^{-\alpha/2}(1) = B_{1,\alpha,0}(x) * 1 = \int_{\mathbb{R}^n} B_{1,\alpha,0}(x-y) dy
\]

Then

\[
u_{2,\alpha,0}(x) = 1
\]

\[
3^\alpha - m = 0, k \geq 1 \text{ Then}
\]

Theorem (7)

For all \(k \geq 1, \alpha > 0, m = 0 \) the solution \(\nu_{k,\alpha,0}(x) \) of (39) is

\[
u_{k,\alpha,0}(x) = 1
\]
On higher order fractional Bessel potentials

Proof

Let the relations (39) and (50) be true for some \(k = r \), i.e.

\[
u_{r,\alpha,0}(x) = 1
\]

is the solution of equation

\[
(I - \Delta)^{\alpha r/2} u_{r,\alpha,0}(x) = 1, \quad \alpha > 0 \quad \text{in} \quad \mathbb{R}^n
\]

We now try to prove for \(k = r + 1 \), so we can write Eq. (39) in the following form

\[
(I - \Delta)^{\alpha (r+1)/2} u_{r+1,\alpha,0}(x) = 1, \quad \alpha > 0 \quad \text{in} \quad \mathbb{R}^n
\]

which is equivalent to the following system

\[
(I - \Delta)^{\alpha r/2} u_{r+1,\alpha,0}(x) = W(x)
\]

\[
(I - \Delta)^{\alpha r/2} W(x) = 1
\]

Then using (51), we get

\[
W(x) = u_{r,\alpha,0}(x) = 1
\]

by substituting from Eq. (56) in Eq. (54), we get

\[
(I - \Delta)^{\alpha r/2} u_{r+1,\alpha,0}(x) = 1
\]

\[
u_{r+1,\alpha,0}(x) = (I - \Delta)^{\alpha r/2}(1) = B_{1,\alpha,0}(x)*1 = \int_{\mathbb{R}^n} B_{1,\alpha,0}(x - y) dy
\]

Then

\[
u_{r+1,\alpha,0}(x) = 1
\]

4° \(k = 1, m = 1 \) Then

\[
(I - \Delta)^{\alpha r/2} u_{1,\alpha,1}(x) = \vert x \vert^2
\]

Then

\[
u_{1,\alpha,1}(x) = (I - \Delta)^{-\alpha r/2}(\vert x \vert^2)
\]

\[
= \frac{1}{\gamma(\alpha) \mathbb{R}^n} \int_{0}^{\infty} \int_{\mathbb{R}^n} \exp(-\pi \vert x - y \vert^2 / t) \exp(-t / 4 \pi) t^{-\alpha r - \alpha / 2} \vert y \vert^2 \frac{dt}{t} dy
\]

Let

\[
y - x = (\sqrt{t} / \sqrt{\pi}) z \Rightarrow \frac{-\pi}{t} \vert y - x \vert^2 = -\vert z \vert^2
\]

\[
\vert y \vert^2 = \vert x \vert^2 + (2 \sqrt{t} / \sqrt{\pi}) x.z + (t / \pi) \vert z \vert^2
\]

Then

\[
u_{1,\alpha,1}(x) = A + B + C
\]

Where

\[
A = \frac{\vert x \vert^2}{\gamma(\alpha) \mathbb{R}^n} \int_{0}^{\infty} \int_{\mathbb{R}^n} \exp(-\pi \vert z \vert^2) \exp(-t / 4 \pi) t^{-\alpha r - \alpha / 2} \frac{dt}{t} \left(\frac{\sqrt{t}}{\sqrt{\pi}} \right)^n dz
\]

By rearranging the order of integration, we get
\[A = \frac{|x|^2}{\gamma(\alpha)} \int_0^\infty \exp\left(-t/4\pi\right) t^{\alpha/2} \frac{dt}{t} \int_{\mathbb{R}^n} \frac{1}{(\sqrt{\pi})^n} \exp\left(-|z|^2\right) dz \]
\[= \frac{|x|^2}{\gamma(\alpha)} \int_0^\infty \exp\left(-t/4\pi\right) t^{\alpha/2} \frac{dt}{t} = |x|^2 \quad (61) \]

And
\[B = \frac{1}{\gamma(\alpha)} \int_0^\infty \exp\left(-|z|^2\right) \exp\left(-t/4\pi\right) t^{-(\alpha+1)/2} \frac{2\sqrt{t}}{\sqrt{\pi}} (x,z) \frac{dt}{t} \left(\frac{\sqrt{t}}{\sqrt{\pi}}\right)^n dz \]
\[= 2\pi^{-1/2} \frac{1}{\gamma(\alpha)} \int_0^\infty \exp\left(-|z|^2\right) \exp\left(-t/4\pi\right) t^{-(\alpha+1)/2} (x,z) \frac{dt}{t} \left(\frac{\sqrt{t}}{\sqrt{\pi}}\right)^n dz \]
\[= 2\left(\frac{\pi}{\gamma(\alpha)}\right)^{-1/2} \int_0^\infty \exp\left(-t/4\pi\right) t^{(\alpha+1)/2} \frac{dt}{t} \int_{\mathbb{R}^n} \exp\left(-|z|^2\right) (x,z) dz \]

But since
\[\int_{\mathbb{R}^n} \exp\left(-|z|^2\right) (x,z) dz = \sum_{i=1}^n x_i z_i e^{-i\frac{\pi}{4}} = 0. \]

Then
\[B = 0 \quad (62) \]

Finally
\[C = \frac{1}{\gamma(\alpha)} \int_0^\infty \exp\left(-|z|^2\right) \exp\left(-t/4\pi\right) t^{-(\alpha+1)/2} \frac{1}{\pi} |z|^2 \frac{dt}{t} \left(\frac{\sqrt{t}}{\sqrt{\pi}}\right)^n dz \]
\[= \frac{\pi}{\gamma(\alpha)} \int_0^\infty \exp\left(-t/4\pi\right) t^{(\alpha+2)/2} \frac{dt}{t} \int_{\mathbb{R}^n} \exp\left(-|z|^2\right) dz , \]

but since we can deduce
\[\int_{\mathbb{R}^n} \exp\left(-|z|^2\right) dz = \frac{1}{2} n \pi^{n/2}, \]

also using (43) we obtain that
\[C = \alpha n \quad (63) \]

then we get
\[u_{1,\alpha,1}(x) = |x|^2 + \alpha n \quad (64) \]

5° - \(m = 1, \ k = 2 \) Then
\[(I-\Delta)^{\alpha/2} u_{2,\alpha,1}(x) = |x|^2 \quad (65) \]
\[(I-\Delta)^{\alpha/2} u_{2,\alpha,1}(x) = |x|^2 \]

By write above equation in the equivalent system
\[(I-\Delta)^{\alpha/2} w = |x|^2 \quad (66) \]
\[(I-\Delta)^{\alpha/2} u_{2,\alpha,1}(x) = w \quad (67) \]

From Eq. (66) and Eq. (58), we have directly
\[w = u_{1,\alpha,1}(x) = |x|^2 + \alpha n \quad (68) \]
By substituting from Eq. (68) in Eq. (67), we get
\[
(I - \Delta)^{\alpha/2} u_{2,\alpha,1}(x) = |x|^2 + \alpha n
\]
\[
u_{2,\alpha,1}(x) = (I - \Delta)^{-\alpha/2}(|x|^2 + \alpha n) = B_{1,\alpha,0}(x) \frac{|x|^2 + \alpha n}{\gamma(\alpha) \Gamma(\alpha)}
\]
\[
= \frac{1}{\gamma(\alpha) \Gamma(\alpha)} \int_0^\infty \exp\left(-\pi |x-y|^2 / t\right) \exp(-t/4\pi) t^{-\alpha/2} |y|^2 dt dy
\]
\[
+ \frac{\alpha n}{\gamma(\alpha) \Gamma(\alpha)} \int_0^\infty \exp\left(-\pi |x-y|^2 / t\right) \exp(-t/4\pi) t^{(-\alpha+1)/2} dt dy
\]
\[
= \frac{1}{\gamma(\alpha) \Gamma(\alpha)} \int_0^\infty \exp\left(-\pi |x-y|^2 / t\right) \exp(-t/4\pi) t^{(-\alpha+1)/2} |y|^2 dt dy
\]
\[
+ \alpha n \int_0^\infty B_{1,\alpha,0}(x-y) dy
\]
And by using Eq. (41) and Eq. (44), we get
\[
u_{2,\alpha,1}(x) = \frac{1}{\gamma(\alpha) \Gamma(\alpha)} \int_0^\infty \exp\left(-\pi |x-y|^2 / t\right) \exp(-t/4\pi) t^{(-\alpha+1)/2} |y|^2 dt dy + \alpha n
\]
And by using Eq. (59) and Eq. (64), we deduce
\[
u_{2,\alpha,1}(x) = |x|^2 + 2\alpha n = u_{1,\alpha,1}(x) + \alpha n
\]
(69)
6' - m = 1, k \geq 1 Then
We expect and prove the next theorem

Theorem (8)

For all $k \geq 1, \alpha > 0, m = 1$ the solution $u_{k,\alpha,1}(x)$ of (39) is
\[
u_{k,\alpha,1}(x) = u_{k-1,\alpha,1}(x) + \alpha n
\]
(70)
Proof

Let the relations (39) and (70) are true for some $k = r$ i. e.,
\[
u_{r,\alpha,1}(x) = u_{r-1,\alpha,1}(x) + \alpha n
\]
(71)
is the solution of equation
\[
(I - \Delta)^{\alpha/2} u_{r,\alpha,1}(x) = |x|^2, \quad \alpha > 0 \quad in \quad \mathbb{R}^n
\]
(72)
For $k = r + 1$, we can write Eq. (39) in the following form
\[
(I - \Delta)^{\alpha(r+1)/2} u_{r+1,\alpha,1}(x) = |x|^2, \quad \alpha > 0 \quad in \quad \mathbb{R}^n
\]
(73)
which equivalent to the following system
\[
(I - \Delta)^{\alpha/2} u_{r+1,\alpha,1}(x) = W(x)
\]
(74)
\[
(I - \Delta)^{\alpha(r+1)/2} W(x) = |x|^2
\]
(75)
and then using (71) we get
\[
W(x) = u_{r-1,\alpha,1}(x) + \alpha n
\]
(76)
Then by substituting from Eq. (76) in Eq. (74), we get
\[
(I - \Delta)^{\alpha/2} u_{r+1,\alpha,1}(x) = u_{r-1,\alpha,1}(x) + \alpha n
\]
then using (7), we get
\[u_{r+1,\alpha,1}(x) = \frac{1}{\gamma(\alpha) R^n} \int_0^\infty \int_0^\infty \exp\left(-\pi |x-y|^2/t\right) \exp\left(-t/4\pi\right) t^{(-n+\alpha)/2} u_{r-1,\alpha,1}(y) \frac{dt}{t} \frac{dy}{y} + \frac{\alpha n}{\gamma(\alpha) R^n} \int_0^\infty \int_0^\infty \exp\left(-\pi |x-y|^2/t\right) \exp\left(-t/4\pi\right) t^{(-n+\alpha)/2} \frac{dt}{t} \frac{dy}{y} \]
\[= u_{r,\alpha,1}(x) + \alpha n \int_{\mathbb{R}^n} B_{1,\alpha,0}(x-y) \, dy = u_{r,\alpha,1}(x) + \alpha n \quad (77) \]

Then the proof is complete.

References

Received: January, 2012