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Abstract

We use two second-order linear homogeneous difference equations
with variable coefficients as well as one second-order linear homoge-
neous difference equation with constant coefficients to obtain Euler’s
number e. Also, we obtain Euler’s number by using two first-order lin-
ear difference equations with variable coefficients, one homogeneous and
one nonhomogeneous. We conclude the article by inviting the reader
to obtain the Euler’s number e in connection with some other suitable
difference equations.
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1. Introduction

The transcendental number e = limn−→∞
(
1 + 1

n

)n
=

∞∑
n=0

1

n!
is called

Euler’s number in honor of Leonhard Euler (1707 – 1783). Since John Napier

(1550 – 1617) used e as the base of natural logarithm it is also known as

the Napier’s constant (or logarithmic constant). John Napier was the first

who used e as the base of the natural logarithm, and hence he is considered

the inventor of e. However, the symbol e as we know it was introduced

by Euler. While Euler proved that e is irrational, Charles Hermite (1822 –

1901) proved that e is transcendental. There seems to be confusion in some



1096 M. K. Azarian

literature between Euler’s number and Euler’s constant (also known as Euler-

Mascheroni constant). We note that Euler’s constant is γ = 0.57721... while

Euler’s number is e = 2.71828....

A classic example of a second-order linear homogeneous difference

equation with constant coefficients is the difference equation that defines the

Fibonacci numbers. Namely,

Fn = Fn−1 + Fn−2, where F0 = 0, F1 = 1, and n ≥ 2.

Another well-known example of a second-order linear homogeneous difference

equation with constant coefficients is the difference equation

Ln = Ln−1 + Ln−2, where L0 = 2, L1 = 1, and n ≥ 2,

that defines the Lucas numbers. Fibonacci numbers and Lucas numbers are

named after Leonardo Fibonacci (c. 1170 – c. 1250) and Francois Lucas

(1842–1891), respectively. Throughout this article Z
+ represents the set of all

positive integers.

Our goal in this article is to find e in connection with particular solu-

tions of difference equations (recurrence relations). We use two second-order

linear homogeneous difference equations with variable coefficients as well as

one second-order linear homogeneous difference equation with constant coeffi-

cients to obtain Euler’s number e. Also, we obtain Euler’s number by using

two first-order linear difference equations with variable coefficients, one homo-

geneous and one nonhomogeneous. We conclude the article by inviting the

reader to obtain the Euler’s number e in connection with some other suitable

difference equations.

2. Using Difference Equations of Order Two

In this section we find Euler’s number by using three different second-

order linear homogeneous difference equations.

Problem 2.1. Let xn − n(xn−1 + xn−2) + (xn−1 + xn−2) = 0, where

x1 = 0, x2 = 1, and n ≥ 3. Then

1 +

(
lim

n−→∞

∞∑
k=1

(xn

n!

)k
)−1

= e.

Proof. The given difference equation can be rewritten as

xn − nxn−1 = −xn−1 + (n − 1)xn−2. (1)
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Next, using the initial conditions we can easily see that the right-hand side of

(1) is always 1 or −1. Hence, for i ≥ 2, we conjecture that

xi − ixi−1 = (−1)i. (2)

We can easily show that (2) is true for all i ≥ 2, by using (1) and mathematical

induction. Now, we divide both sides of (2) by i! to obtain

xi

i!
− xi−1

(i − 1)!
=

(−1)i

i!
. (3)

Thus, from (3) we get

n∑
i=2

(
xi

i!
− xi−1

(i − 1)!

)
=

n∑
i=2

(−1)i

i!
. (4)

If we simplify the left-hand side of (4), which is a telescoping series, we get

xn

n!
=

n∑
i=2

(−1)i

i!
=

n∑
i=0

(−1)i

i!
. (5)

Now, from (5) we deduce that

∞∑
k=1

(xn

n!

)k

=

∞∑
k=1

(
n∑

i=0

(−1)i

i!

)k

.

Therefore,

lim
n−→∞

∞∑
k=1

(xn

n!

)k

= lim
n−→∞

∞∑
k=1

(
n∑

i=0

(−1)i

i!

)k

=

∞∑
k=1

( ∞∑
i=0

(−1)i

i!

)k

=

∞∑
k=1

(
e−1
)k

=
1

e − 1
.

Consequently,

1 +

(
lim

n−→∞

∞∑
k=1

(xn

n!

)k
)−1

= e.

Note 2.2. Problem 2.1 was a problem proposal with a solution by the

author in the College Mathematics Journal [2]. However, the solution that

was provided by the author (namely proof of Problem 2.1) was not published.

Aside from the author, this problem was also solved by thirty other individual
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mathematicians or a group of mathematicians The solution that was provided

by Li Zhou was published as the solution to this problem. Li Zhou used

mathematical induction as well as Lebesgue’s dominated convergence theorem

to arrive at his conclusion. For an alternative proof of this problem the reader

is referred to [2].

Problem 2.3. Let Fn and F2n be Fibonacci numbers and let

2nxn+1 + (1 − 2n)xn − xn−1 = 0, x0 = Fn �= x1 = F2n, n ∈ Z
+.

Then

(i)

[
Fn − F2n

Fn − limn→∞ xn

]2

= e and (ii)

[
(1 − Ln)(Ln+1 + Ln−1)

Ln+1 + Ln−1 − 5 limn→∞ xn

]2

= e,

where Ln, Ln+1, and Ln−1 are Lucas numbers (n ∈ Z
+).

Proof (i). First we note that for n ∈ Z
+ the given difference equation

can be rewritten as

xn+1 − xn = − 1

2n
(xn − xn−1).

From this difference equation we can easily deduce that

xn+1 − xn = (−1

2
)n 1

n!
(x1 − x0), n ∈ Z

+. (6)

Now, we note that

xn+1 = x0 + (x1 − x0) + (x2 − x1) + ... + (xn+1 − xn)

= x0 +
n∑

i=0

(xi+1 − xi). (7)

Next, using (6) we can rewrite (7) as

xn+1 = x0 + (x1 − x0)
n∑

i=0

(−1

2
)i 1

i!
.

Therefore,

lim
n→∞

xn = x0 + (x1 − x0)e
− 1

2 = Fn + (F2n − Fn)e−
1
2 . (8)

Finally, we obtain the desired equality by solving (8) for e.
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Proof (ii). Since F2n = FnLn and Fn = 1
5
(Ln+1 + Ln−1) (for example

see, [4, p.2]), we can rewrite (8) as

lim
n→∞

xn =
1

5
(Ln+1 + Ln−1)[1 + (Ln − 1)e−

1
2 ]. (9)

Now, we get the desired equality by simply solving (9) for e.

Note 2.4. Problem 2.3 was a problem proposal with a solution by

the author in the Fibonacci Quarterly [1]. However, the solution provided by

the author (namely proof of Problem 2.3) was not published. Aside from the

author, this problem was also solved by three other mathematicians and the

solution that was provided by Francisco Perdomo and Angel Plaza (jointly)

was published as the solution of the problem. An alternative proof of this

problem can be found in [1].

Problem 2.5. Let m and n be positive integers greater than 1, and

let F =
Fmn

FmFn
, where Fm, Fn, and Fmn are Fibonacci numbers. Then

[ ∞∑
i=0

(
i∑

j=0

1

j!

)
(F−i − F−i−1)

]F

= e.

Proof. First we note that for |x| < 1 we have

ex

1 − x
=

∞∑
i=0

(
i∑

j=0

1

j!

)
xi.

Also, it is well-known that F > 1 (for example, see [3]). Next, if we substitute
1

F
for x in the above expression, we obtain

Fe
1
F

F − 1
=

∞∑
i=0

(
i∑

j=0

1

j!

)
F−i.

Next, if we multiply both sides of the above expression by
F − 1

F
we get

e
1
F =

∞∑
i=0

(
i∑

j=0

1

j!

)
(F−i − F−i−1).

Now, we achieve the desired result by reaching both sides of this expansion to

the power F .
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Note 2.6. Problem 2.5 was a problem proposal with a solution by

the author in the Fibonacci Quarterly [3]. However, the solution that was

provided by the author (namely proof of Problem 2.5) was not published in

the Fibonacci Quarterly. Aside from the author, this problem was also solved

by ten other mathematicians and the solution that was provided by Norbert

Jensen was the solution that was published. For another proof of this problem

see [3].

3. Using Difference Equations of Order One

In this section we find Euler’s number by using two different first-order

linear difference equations with variable coefficients.

Problem 3.1. Let n!(n + 2)(xn+1 − xn) = 1, where x1 = 1
2
, and

n ∈ Z
+. Then ( ∞∑

n=1

(−1)nxn

)−1

= e.

Proof. First we note that the given difference equation can be rewrit-

ten as

xn+1 = xn +
1

n!(n + 2)
.

Hence, x1 =
1

2
, x2 =

5

6
, x3 =

23

24
, x4 =

119

120
, and we conjecture that

xn =
(n + 1)! − 1

(n + 1)!
.

This conjecture can be proven by mathematical induction. Thus,

∞∑
n=1

(−1)nxn =
∞∑

n=1

(−1)n (n + 1)! − 1

(n + 1)!
= e−1.

Now, we obtain the desired result form the above equality.

Problem 3.2. Let nxn − xn−1 = 0, where x0 = 1. Then( ∞∑
n=0

xn

)−1

= e.

Proof follows from mathematical induction and the fact that e =∞∑
n=0

1

n!
.
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4. Questions

We used two second-order linear homogeneous difference equations

with variable coefficients as well as one second-order linear homogeneous dif-

ference equation with constant coefficients to obtain e. Also, we obtained e by

using two first-order linear difference equations with variable coefficients, one

homogeneous and one nonhomogeneous. We invite the reader to obtain the

Euler’s number e in connection with some other suitable difference equations.

Question 4.1. Can you think of other linear difference equations of

order one or two that would produce Euler’s number e?

Question 4.2. Can you think of linear difference equations of order

larger than two that would produce Euler’s number e?

Question 4.3. Can you think of nonlinear difference equations of

any order that would produce Euler’s number e?

We note that there are some rather obvious difference equations that

would produce e. For example, the particular solution to the difference equa-

tion xn+1 − xn = 0 will be e provided x0 = e.
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