\textit{s}^g - Locally Closed Sets in Bitopological Spaces

K. Chandrasekhar Rao and K. Kannan

Department of Mathematics, Srinivasa Ramanujan Centre
SASTRA University, Kumbakonam - 612 001, India
k.chandrasekhar@rediffmail.com
anbukkannan@rediffmail.com

Abstract

The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, \textit{s}^g submaximal spaces and study their basic properties in bitopological spaces.

Mathematics Subject Classification: 54E55

Keywords: \textit{\tau}_1\textit{\tau}_2 - semi star generalized locally closed sets, \textit{\tau}_1\textit{\tau}_2 - semi star generalized closed sets, \textit{\tau}_1\textit{\tau}_2 - submaximal spaces, \textit{\tau}_1\textit{\tau}_2 - \textit{s}^g submaximal spaces

1 Introduction

The study of generalization of closed sets has been found to ensure some new separation axioms which have been very useful in the study of certain objects of digital topology. In recent years many generalizations of closed sets have been developed by various authors. K. Chandrasekhar Rao and K. Joseph [3] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in unital topological spaces. On the other hand K. Chandrasekhar Rao and K. Kannan [4] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in bitopological spaces.

of semi star generalized locally closed sets and s^*g - submaximal spaces in unital topological spaces.

In this paper, we introduce the concept of semi star generalized locally closed sets, s^*g - submaximal spaces and study their basic properties in bitopological spaces.

2 Preliminaries

Let (X, τ_1, τ_2) or simply X denote a bitopological space. By $\tau_1 - S^*GO(X, \tau_1, \tau_2)$ {resp. $\tau_1 - S^*GC(X, \tau_1, \tau_2)$}, we shall mean the collection of all $\tau_1 - s^*g$ open sets (resp. $\tau_1 - s^*g$ closed sets) in (X, τ_1, τ_2). For any subset $A \subseteq X$, τ_1 - int (A) and τ_1 - cl (A) denote the interior and closure of a set A with respect to the topology τ_1 respectively. A^C denotes the complement of A in X unless explicitly stated. We shall require the following known definitions.

Definition 2.1 A subset of a bitopological space (X, τ_1, τ_2) is called

(a) $\tau_1 \tau_2$ - semi open if there exists a τ_1 - open set U such that $U \subseteq A \subseteq \tau_2$ - cl (U).

(b) $\tau_1 \tau_2$ - semi closed if $X - A$ is $\tau_1 \tau_2$ - semi open.

Equivalently, a subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ - semi closed if there exists a τ_1 - closed set F such that τ_2 - int $(F) \subseteq A \subseteq F$.

(c) $\tau_1 \tau_2$ - generalized closed ($\tau_1 \tau_2 - g$ closed) if τ_2 - cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in X.

(d) $\tau_1 \tau_2$ - generalized open ($\tau_1 \tau_2 - g$ open) if $X - A$ is $\tau_1 \tau_2 - g$ closed.

(e) $\tau_1 \tau_2$ - semi star generalized closed ($\tau_1 \tau_2 - s^*g$ closed) if τ_2 - cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - semi open in X.

(f) $\tau_1 \tau_2$ - semi star generalized open ($\tau_1 \tau_2 - s^*g$ open) if $X - A$ is $\tau_1 \tau_2 - s^*g$ closed in X.

3 Semi Star Generalized Locally Closed Sets

Definition 3.1 A subset A of a bitopological space (X, τ_1, τ_2) is said to be

(a) $\tau_1 \tau_2 - s^*g$ locally closed set if $A = G \cap F$ where G is $\tau_1 - s^*g$ open set and F is $\tau_2 - s^*g$ closed set in X.
(b) $\tau_1 \tau_2 - s^{*}g$ locally closed* if $A = G \cap F$ where G is $\tau_1 - s^{*}g$ open set and F is τ_2 - closed in X.

(c) $\tau_1 \tau_2 - s^{*}g$ locally closed** if $A = G \cap F$ where G is τ_1 - open and F is $\tau_2 - s^{*}g$ closed in X.

Remark 3.2
(a) The class of all $\tau_1 \tau_2 - s^{*}g$ locally closed sets in (X, τ_1, τ_2) is denoted by $\tau_1 \tau_2 - S^{*}GLC(X, \tau_1, \tau_2)$.

(b) The class of all $\tau_1 \tau_2 - s^{*}g$ locally closed* sets in (X, τ_1, τ_2) is denoted by $\tau_1 \tau_2 - S^{*}GLC^{*}(X, \tau_1, \tau_2)$.

(c) The class of all $\tau_1 \tau_2 - s^{*}g$ locally closed** sets in (X, τ_1, τ_2) is denoted by $\tau_1 \tau_2 - S^{*}GLC^{**}(X, \tau_1, \tau_2)$.

Example 3.3 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b, c\}\}, \tau_2 = \{\phi, X, \{a\}\}$. Then $\tau_1 - s^{*}g$ open sets in (X, τ_1, τ_2) are $\phi, X, \{b, c\}$ and $\tau_2 - s^{*}g$ closed sets in (X, τ_1, τ_2) are $X, \phi, \{b, c\}$. Then

(a) $\tau_1 \tau_2 - s^{*}g$ locally closed sets in (X, τ_1, τ_2) are $\phi, X, \{b, c\}$.

(b) $\tau_1 \tau_2 - s^{*}g$ locally closed* sets in (X, τ_1, τ_2) are $\phi, X, \{b, c\}$.

(c) $\tau_1 \tau_2 - s^{*}g$ locally closed** sets in (X, τ_1, τ_2) are $\phi, X, \{b, c\}$.

Remark 3.4 Every $\tau_1 \tau_2 - s^{*}g$ locally closed set in (X, τ_1, τ_2) are not τ_2 - closed in general as can be seen from the following example.

Example 3.5 In Example 3.3, $\{b\}$ is $\tau_1 \tau_2 - s^{*}g$ locally closed set in (X, τ_1, τ_2), but $\{b\}$ is not τ_2 - closed in (X, τ_1, τ_2).

Remark 3.6 Every $\tau_1 \tau_2 - s^{*}g$ locally closed set in (X, τ_1, τ_2) are not τ_1 - open in general as can be seen from the following example.

Example 3.7 In Example 3.3, $\{c\}$ is $\tau_1 \tau_2 - s^{*}g$ locally closed set in (X, τ_1, τ_2), but $\{c\}$ is not τ_1 - open in (X, τ_1, τ_2).

Theorem 3.8 In any bitopological space (X, τ_1, τ_2),

(i) $A \in \tau_1 \tau_2 - S^{*}GLC^{*}(X, \tau_1, \tau_2) \Rightarrow A \in \tau_1 \tau_2 - S^{*}GLC(X, \tau_1, \tau_2)$.

(ii) $A \in \tau_1 \tau_2 - S^{*}GLC^{**}(X, \tau_1, \tau_2) \Rightarrow A \in \tau_1 \tau_2 - S^{*}GLC(X, \tau_1, \tau_2)$.

(iii) $A \in \tau_2 - S^{*}GC(X, \tau_1, \tau_2) \Rightarrow A \in \tau_1 \tau_2 - S^{*}GLC(X, \tau_1, \tau_2)$.

(iv) $A \in \tau_1 - S^{*}GO(X, \tau_1, \tau_2) \Rightarrow A \in \tau_1 \tau_2 - S^{*}GLC(X, \tau_1, \tau_2)$.
Proof. (i) Since A is $\tau_1, \tau_2 - s^* g$ locally closed subset in (X, τ_1, τ_2), we have $A = G \cap F$ where G is $\tau_1 - s^* g$ open set and F is τ_2 - closed in X. Since every τ_2 - closed sets are $\tau_2 - s^* g$ closed in (X, τ_1, τ_2), $A = G \cap F$ where G is $\tau_1 - s^* g$ open and F is $\tau_2 - s^* g$ closed in (X, τ_1, τ_2). Therefore $A \in \tau_1, \tau_2 - S^* GLC(X, \tau_1, \tau_2)$.

(ii) Since A is $\tau_1, \tau_2 - s^* g$ locally closed** subset in (X, τ_1, τ_2), we have $A = G \cap F$ where G is $\tau_1 - open$ and F is $\tau_2 - s^* g$ closed in (X, τ_1, τ_2). Since every τ_1 - open sets are $\tau_1 - s^* g$ open in (X, τ_1, τ_2), $A = G \cap F$ where G is $\tau_1 - s^* g$ open and F is $\tau_2 - s^* g$ closed in (X, τ_1, τ_2). Therefore $A \in \tau_1, \tau_2 - S^* GLC(X, \tau_1, \tau_2)$.

(iii) Since $A = A \cap X$ and A is $\tau_2 - s^* g$ closed and X is $\tau_1 - s^* g$ open in (X, τ_1, τ_2), we have $A \in \tau_1, \tau_2 - S^* GLC(X, \tau_1, \tau_2)$.

(iv) Since $A = A \cap X$ and A is $\tau_1 - s^* g$ open and X is $\tau_2 - s^* g$ closed in (X, τ_1, τ_2), we have $A \in \tau_1, \tau_2 - S^* GLC(X, \tau_1, \tau_2)$. \hfill \Box

Remark 3.9 The converses of (i), (ii), (iii) and (iv) of the above theorem are not true in general as can be seen from the following examples.

Example 3.10 Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{c, d\}\}$. Then $\{a, c\}$ is $\tau_1, \tau_2 - s^* g$ locally closed in (X, τ_1, τ_2), but not $\tau_1, \tau_2 - s^* g$ locally closed* in (X, τ_1, τ_2).

Example 3.11 In Example 3.3, $\{b\}$ is $\tau_1, \tau_2 - s^* g$ locally closed in (X, τ_1, τ_2), but not $\tau_1, \tau_2 - s^* g$ locally closed** in (X, τ_1, τ_2).

Example 3.12 In Example 3.10, $\{a, c\}$ is $\tau_1, \tau_2 - s^* g$ locally closed in (X, τ_1, τ_2), but not $\tau_1 - s^* g$ open in (X, τ_1, τ_2) and $\{a\}$ is $\tau_1, \tau_2 - s^* g$ locally closed in (X, τ_1, τ_2), but not $\tau_2 - s^* g$ closed in (X, τ_1, τ_2).

Theorem 3.13 If (X, τ_1, τ_2) is pairwise door space, then every subset of X is both $\tau_1, \tau_2 - s^* g$ locally closed and $\tau_2, \tau_1 - s^* g$ locally closed.

Proof. Since (X, τ_1, τ_2) is pairwise door space, every subset of (X, τ_1, τ_2) is either τ_1 - open or τ_2 - closed and τ_2 - open or τ_1 - closed. Since every τ_1 - open (resp. τ_2 - closed) subset of (X, τ_1, τ_2) is $\tau_1 - s^* g$ open (resp. $\tau_2 - s^* g$ closed), we have every subset of (X, τ_1, τ_2) is either $\tau_1 - s^* g$ open or $\tau_2 - s^* g$ closed. Since every $\tau_1 - s^* g$ open and $\tau_2 - s^* g$ closed subset of (X, τ_1, τ_2) is $\tau_1, \tau_2 - s^* g$ locally closed, we have every subset of X is $\tau_1, \tau_2 - s^* g$ locally closed. Similarly we can prove that every subset of X is $\tau_2, \tau_1 - s^* g$ locally closed. \hfill \Box

Theorem 3.14 For a subset A of a bitopological space (X, τ_1, τ_2), the following are equivalent.

(a) $A \in \tau_1, \tau_2 - S^* GLC^*(X, \tau_1, \tau_2)$.

(b) $A = G \cap [\tau_2 - cl (A)]$ for some $\tau_1 - s^* g$ open set G.
(c) $A \cup \{X - [\tau_2 - \cl(A)]\}$ is $\tau_1 - s^*g$ open.

(d) $[\tau_2 - \cl(A)] - A$ is $\tau_1 - s^*g$ closed.

Proof. $(a) \Rightarrow (b):$
Since A is $\tau_1 \tau_2 - s^*g$ locally closed* set in (X, τ_1, τ_2), we have $A = G \cap F$ where
G is $\tau_1 - s^*g$ open set and F is τ_2-closed in X. Since $A \subseteq \tau_2 - \cl(A)$ and
$A \subseteq G$, we have $A \subseteq G \cap [\tau_2 - \cl(A)]$(1)
Since $A \subseteq F$ and F is τ_2-closed in X, we have $\tau_2 - \cl(A) \subseteq F$. Therefore
$G \cap [\tau_2 - \cl(A)] \subseteq G \cap F = A$. Hence $G \cap [\tau_2 - \cl(A)] \subseteq A$(2)
From (1) and (2), we have $A = G \cap [\tau_2 - \cl(A)]$ for some $\tau_1 - s^*g$ open set G in
(X, τ_1, τ_2).

(b) $\Rightarrow (a) :$
Suppose that $A = G \cap [\tau_2 - \cl(A)]$ for some $\tau_1 - s^*g$ open set G in (X, τ_1, τ_2).
Since $\tau_2 - \cl(A)$ is τ_2-closed in (X, τ_1, τ_2) and G is $\tau_1 - s^*g$ closed in (X, τ_1, τ_2),
we have $A \in \tau_1 \tau_2 - S^*GLC^*(X, \tau_1, \tau_2)$

(c) $\Rightarrow (b):$
Suppose that $A \cup \{X - [\tau_2 - \cl(A)]\}$ is $\tau_1 - s^*g$ open in (X, τ_1, τ_2). Let $G =
A \cup \{X - [\tau_2 - \cl(A)]\}$. Then G is $\tau_1 - s^*g$ open in (X, τ_1, τ_2).

Now,

$$
G \cap [\tau_2 - \cl(A)] = [A \cup \{X - [\tau_2 - \cl(A)]\}] \cap [\tau_2 - \cl(A)]
= \{[A \cup [\tau_2 - \cl(A)]^C] \cap [\tau_2 - \cl(A)]
= \{A \cap [\tau_2 - \cl(A)]\} \cup \{[\tau_2 - \cl(A)]^C \cap [\tau_2 - \cl(A)]\}
= A \cup \phi
= A.
$$

Therefore $A = G \cap [\tau_2 - \cl(A)]$ for some $\tau_1 - s^*g$ open set G in (X, τ_1, τ_2).

(c) $\Rightarrow (d):$
Suppose that $A \cup \{X - [\tau_2 - \cl(A)]\}$ is $\tau_1 - s^*g$ open in (X, τ_1, τ_2). Let $G =
A \cup \{X - [\tau_2 - \cl(A)]\}$. Since G is $\tau_1 - s^*g$ open in (X, τ_1, τ_2), we have $X - G$
is $\tau_1 - s^*g$ closed in (X, τ_1, τ_2).

Now,

$$
X - G = X - [A \cup \{X - [\tau_2 - \cl(A)]\}]
= (X - A) \cap \{X - [\tau_2 - \cl(A)]\}
= (X - A) \cap [\tau_2 - \cl(A)]
= \tau_2 - \cl(A) - A.
$$
Therefore, $\tau_2 - \text{cl} (A) - A$ is $\tau_1 - s^*g$ closed in (X, τ_1, τ_2).

(d) \Rightarrow (c):

Suppose that $\tau_2 - \text{cl} (A) - A$ is $\tau_1 - s^*g$ closed in (X, τ_1, τ_2). Let $F = \tau_2 - \text{cl} (A) - A$. Then F is $\tau_1 - s^*g$ closed in (X, τ_1, τ_2) implies that $X - F$ is $\tau_1 - s^*g$ open in (X, τ_1, τ_2).

Now,

\[
X - F = X - \{[\tau_2 - \text{cl}(A)] - A\} \\
= X \cap \{[\tau_2 - \text{cl}(A)] - A\}^C \\
= X \cap \{[\tau_2 - \text{cl}(A)] \cap A^C\}^C \\
= X \cap \{[\tau_2 - \text{cl}(A)]^C \cup (A^C)^C\} \\
= X \cap \{[\tau_2 - \text{cl}(A)]^C \cup A\} \\
= \{X \cap [\tau_2 - \text{cl}(A)]\}^C \cup \{X \cap A\} \\
= [\tau_2 - \text{cl}(A)]^C \cup A \\
= \{X - [\tau_2 - \text{cl}(A)]\} \cup A.
\]

Hence $A \cup \{X - [\tau_2 - \text{cl}(A)]\}$ is $\tau_1 - s^*g$ open in (X, τ_1, τ_2).

\[\square\]

Theorem 3.15 In a bitopological space (X, τ_1, τ_2), the following are equivalent.

(a) $A - [\tau_1 - \text{int} (A)]$ is $\tau_2 - s^*g$ open in (X, τ_1, τ_2).

(b) $[\tau_1 - \text{int} (A)] \cup [X - A]$ is $\tau_2 - s^*g$ closed in (X, τ_1, τ_2).

(c) $G \cup [\tau_1 - \text{int} (A)] = A$ for some $\tau_2 - s^*g$ open set G in (X, τ_1, τ_2).

Proof. (a) \Rightarrow (b):

Now,

\[
X - \{A - [\tau_1 - \text{int}(A)]\} = X \cap \{A - [\tau_1 - \text{int}(A)]\}^C \\
= X \cap \{A \cap \{\tau_1 - \text{int}(A)\}\}^C \\
= X \cap \{A^C \cup ([\tau_1 - \text{int}(A)]\}^C\} \\
= X \cap \{A^C \cup [\tau_1 - \text{int}(A)]\} \\
= \{A^C \cup [\tau_1 - \text{int}(A)]\} \\
= [\tau_1 - \text{int}(A)] \cup [X - A].
\]

Since $A - [\tau_1 - \text{int} (A)]$ is $\tau_2 - s^*g$ open, we have $X - \{A - [\tau_1 - \text{int} (A)]\} = [\tau_1 - \text{int}(A)] \cup [X - A]$ is $\tau_2 - s^*g$ closed in (X, τ_1, τ_2).

(b) \Rightarrow (a):

Suppose that $[\tau_1 - \text{int} (A)] \cup [X - A]$ is $\tau_2 - s^*g$ closed in (X, τ_1, τ_2). Since $[\tau_1$
- $\text{int} (A) \cup [X - A]$ is $\tau_2 - s^*g$ closed, we have $X - \{\tau_1 - \text{int} (A) \cup [X - A]\}$ is $\tau_2 - s^*g$ open. Now,

\[
X - \{\tau_1 - \text{int}(A) \cup [X - A]\} = X \cap \{\tau_1 - \text{int}(A) \cup [X - A]\}^C
\]

\[
= X \cap \{\tau_1 - \text{int}(A) \cup A^C\}^C
\]

\[
= X \cap \{\tau_1 - \text{int}(A)^C \cap (A^C)^C\}
\]

\[
= X \cap \{\tau_1 - \text{int}(A)^C \cap A\}
\]

\[
= A \cap [\tau_1 - \text{int}(A)]^C
\]

\[
= A - [\tau_1 - \text{int}(A)].
\]

Therefore $A - [\tau_1 - \text{int}(A)]$ is $\tau_2 - s^*g$ open in (X, τ_1, τ_2). (b) \Rightarrow (c):

Suppose that $[\tau_1 - \text{int}(A)] \cup [X - A]$ is $\tau_2 - s^*g$ closed. Let $U = [\tau_1 - \text{int}(A)] \cup [X - A]$. Then U is $\tau_2 - s^*g$ closed. Then U^C is $\tau_2 - s^*g$ open.

Now,

\[
U^C \cup [\tau_1 - \text{int}(A)] = \{\tau_1 - \text{int}(A) \cup [X - A]\}^C \cup [\tau_1 - \text{int}(A)]
\]

\[
= \{\tau_1 - \text{int}(A)^C \cap (A^C)^C\} \cup [\tau_1 - \text{int}(A)]
\]

\[
= \{\tau_1 - \text{int}(A)^C \cap A\} \cup [\tau_1 - \text{int}(A)]
\]

\[
= \{\tau_1 - \text{int}(A)^C \cup [\tau_1 - \text{int}(A)]\} \cap \{A \cup [\tau_1 - \text{int}(A)]\}
\]

\[
= X \cap A
\]

\[
= A.
\]

Take $G = U^C$. Then $A = G \cup [\tau_1 - \text{int}(A)] = A$ for some $\tau_2 - s^*g$ open set in (X, τ_1, τ_2). (c) \Rightarrow (b):

Suppose that $A = G \cup [\tau_1 - \text{int}(A)] = A$ for some $\tau_2 - s^*g$ open set G in (X, τ_1, τ_2). Now,

\[
[\tau_1 - \text{int}(A)] \cup [X - A] = \tau_1 - \text{int}(A) \cup A^C
\]

\[
= [\tau_1 - \text{int}(A)] \cup \{G \cup [\tau_1 - \text{int}(A)]\}^C
\]

\[
= [\tau_1 - \text{int}(A)] \cup \{G^C \cap [\tau_1 - \text{int}(A)]^C\}
\]

\[
= \{[\tau_1 - \text{int}(A)] \cup G^C\} \cap \{[\tau_1 - \text{int}(A)] \cup [\tau_1 - \text{int}(A)]^C\}
\]

\[
= \{[\tau_1 - \text{int}(A)] \cup G^C\} \cap X
\]

\[
= \{[\tau_1 - \text{int}(A)] \cup G^C\}
\]

\[
= X - G.
\]

Since G is $\tau_2 - s^*g$ open in (X, τ_1, τ_2), we have $X - G$ is $\tau_2 - s^*g$ closed in (X, τ_1, τ_2). Therefore $[\tau_1 - \text{int}(A)] \cup [X - A]$ is $\tau_2 - s^*g$ closed in (X, τ_1, τ_2). □
Remark 3.16 The union of two \(\tau_1 \tau_2 - s^*g \) locally closed sets in \((X, \tau_1, \tau_2)\) is not \(\tau_1 \tau_2 - s^*g \) locally closed in general as can be seen from the following example.

Example 3.17 Let \(X = \{a, b, c, d\}, \tau_1 = \{\emptyset, X, \{a\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}. \) Then \(A = \{a, d\}, B = \{b, d\} \) are \(\tau_1 \tau_2 - s^*g \) locally closed sets in \((X, \tau_1, \tau_2)\), but \(A \cup B = \{a, b, d\} \) is not \(\tau_1 \tau_2 - s^*g \) locally closed set in \((X, \tau_1, \tau_2)\).

Remark 3.18 Even \(A \) and \(B \) are not \(\tau_1 \tau_2 - s^*g \) locally closed sets in \((X, \tau_1, \tau_2)\), \(A \cup B \) is \(\tau_1 \tau_2 - s^*g \) locally closed in general as can be seen from the following example.

Example 3.19 Let \(X = \{a, b, c, d\}, \tau_1 = \{\emptyset, X, \{a\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}. \) Then \(A = \{b\}, B = \{a, d\} \) are not \(\tau_1 \tau_2 - s^*g \) locally closed sets in \((X, \tau_1, \tau_2)\), but \(A \cup B = \{a, b, d\} \) is \(\tau_1 \tau_2 - s^*g \) locally closed set in \((X, \tau_1, \tau_2)\).

4 \(s^*g \) - Submaximal Spaces

Definition 4.1 A bitopological space \((X, \tau_1, \tau_2)\) is

(i) \(\tau_1 \tau_2 \) - submaximal space if every \(\tau_1 \) - dense subset of \(X \) is \(\tau_2 \) - open in \(X \).

(ii) \(\tau_2 \tau_1 \) - submaximal space if every \(\tau_2 \) - dense subset of \(X \) is \(\tau_1 \) - open in \(X \).

(iii) \(\tau_1 \tau_2 - s^*g \) submaximal space if every \(\tau_1 \) - dense subset of \(X \) is \(\tau_2 - s^*g \) open in \(X \).

(iv) \(\tau_2 \tau_1 - s^*g \) submaximal space if every \(\tau_2 \) - dense subset of \(X \) is \(\tau_1 - s^*g \) open in \(X \).

Example 4.2 In Example 3.17,

(i) \(\tau_1 \) - dense subsets of \((X, \tau_1, \tau_2)\) are
\(X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\).

(ii) \(\tau_2 - s^*g \) open sets of \((X, \tau_1, \tau_2)\) are
\(\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\).

(iii) \(\tau_2 \) - open sets of \((X, \tau_1, \tau_2)\) are
\(\emptyset, X, \{a\}, \{a, b\}\{a, c\}\{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}. \) Therefore \((X, \tau_1, \tau_2)\) is both \(\tau_1 \tau_2 - s^*g \) submaximal space and \(\tau_1 \tau_2 \) - submaximal space.

Theorem 4.3 If \((X, \tau_1, \tau_2)\) is \(\tau_1 \tau_2 \) - submaximal space then \(X \) is \(\tau_1 \tau_2 - s^*g \) submaximal space.
Proof. Since \((X, \tau_1, \tau_2)\) is \(\tau_1\tau_2\)-submaximal space, we have every \(\tau_1\)-dense subset of \(X\) is \(\tau_2\)-open in \(X\). Since every \(\tau_2\)-open set in \(X\) is \(\tau_2 - s^*g\) open in \(X\), we have every \(\tau_1\)-dense subset of \(X\) is \(\tau_2 - s^*g\)-open in \(X\). Therefore \((X, \tau_1, \tau_2)\) is \(\tau_1\tau_2 - s^*g\) submaximal space. \(\square\)

Remark 4.4 The converse of the above theorem is not true in general as can be seen from the following example.

Example 4.5 Let \(X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}\). Then \(\tau_1\)-dense subsets of \((X, \tau_1, \tau_2)\) are \(X, \{a\}\), \(\{a, b\}\), \(\{a, c\}\), \(\{a, b, c\}\), \(\{a, b, d\}\), \(\{a, c, d\}\). Therefore \((X, \tau_1, \tau_2)\) is \(\tau_1\tau_2 - s^*g\) submaximal space but not \(\tau_1\tau_2\)-submaximal space.

Theorem 4.6 A bitopological space \((X, \tau_1, \tau_2)\) is \(\tau_1\tau_2 - s^*g\) submaximal space if and only if \(\tau_2\tau_1 - S^*GLC^*(X, \tau_1, \tau_2) = P(X)\).

Proof. Suppose that \((X, \tau_1, \tau_2)\) is \(\tau_1\tau_2 - s^*g\) submaximal space. Obviously \(\tau_2\tau_1 - S^*GLC^*(X, \tau_1, \tau_2) \subseteq P(X)\). Let \(A \in P(X)\) and \(U = A \cup \{X - [\tau_1 - \text{cl}(A)]\}\). Since \(\tau_1 - \text{cl}(U) = X\), we have \(U\) is \(\tau_1\)-dense subset of \(X\). Since \((X, \tau_1, \tau_2)\) is \(\tau_1\tau_2 - s^*g\) submaximal space, we have \(U\) is \(\tau_2 - s^*g\) open in \(X\). Since every \(\tau_2 - s^*g\) open set in \(X\) is \(\tau_2\tau_1 - s^*g\) locally closed* set in \((X, \tau_1, \tau_2)\), we have \(U \in \tau_2\tau_1 - S^*GLC^*(X, \tau_1, \tau_2)\). Therefore \(P(X) \subseteq \tau_2\tau_1 - S^*GLC^*(X, \tau_1, \tau_2)\). Hence \(\tau_2\tau_1 - S^*GLC^*(X, \tau_1, \tau_2) = P(X)\).

Conversely, suppose that \(\tau_2\tau_1 - S^*GLC^*(X, \tau_1, \tau_2) = P(X)\). Let \(A\) be the \(\tau_1\)-dense subset of \((X, \tau_1, \tau_2)\). Then \(A \cup \{X - [\tau_1 - \text{cl}(A)]\} = A \cup [\tau_1 - \text{cl}(A)]^C = A\). Therefore \(A \in \tau_2\tau_1 - S^*GLC^*(X, \tau_1, \tau_2)\) implies that \(A\) is \(\tau_2 - s^*g\) open in \(X\). By Theorem 3.14. Hence \(X\) is \(\tau_1\tau_2 - s^*g\) submaximal space. \(\square\)

References

Received: July, 2008