Helicoidal Surfaces in the Three-Dimensional Lorentz-Minkowski Space Satisfying $\Delta r_i = \lambda_i r_i$

Ch. Baba-Hamed and M. Bekkar

Faculté des Sciences, Département de Mathématiques
Université d’Oran Es-sénia. Oran, Algérie
baba_hamedch@yahoo.fr
bekkar_99@yahoo.fr

Abstract

In this paper, we classify helicoidal surfaces in the 3-dimensional Lorentz-Minkowski space under the condition $\Delta r_i = \lambda_i r_i$ where Δ is the Laplace operator with respect to the first fundamental form and λ is a real number. We also give explicit forms of these surfaces.

Mathematics Subject Classification: 53A05, 53A07, 53C40

Keywords: Lorentz-Minkowski space, helicoidal surfaces, Laplace operator

1. Introduction

Let $r : M^2 \to R^3_l$ be an isometric immersion of a helicoidal surface in the 3-dimensional Lorentz-Minkowski space equipped with the induced metric. By saying Lorentz-Minkowski space R^3_l, we mean the space R^3 with the standard metric given by

$$g = ds^2 = -dx^2 + dy^2 + dz^2$$

where (x, y, z) is a rectangular coordinate system of R^3_l. Let Δ be the Laplace operator associated with the induced metric. Then a well known result due to Takahashi [6] states that minimal surfaces and spheres are the only surfaces in R^3 satisfying the condition

$$\Delta r = \lambda r , \; \lambda \in R$$

On the other hand Garay [3] determined the complete surfaces of revolu-
tion in R^3, whose component functions are eigenfunctions of their Laplace operator, i.e.

$$\Delta r^i = \lambda^i r^i, \quad \lambda^i \in R$$

Later the same author in [4] studied the hypersurfaces in R^{n+1} for which

$$\Delta r = A r, \quad A \in R^{n+1} \times n+1$$

Recently in [1] Bekkar and Zoubir classified the surfaces of revolution with no zero Gaussian curvature K_G in the 3-dimensional Lorentz-Minkowski space under the condition

$$\Delta x^i = \lambda^i x^i, \quad \lambda^i \in R$$

In [5] Kaimakamis and Papantoniou studied surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying the condition

$$\Delta^H r = A r,$$

where Δ^H is the Laplace operator with respect to the second fundamental form and A is a real 3×3 matrix.

An interesting geometric question is raised, the classification of all helicoidal surfaces in 3-dimensional Lorentz-Minkowski space R^3_l, satisfying the condition

$$\Delta r_i = \lambda_i r_i \quad (1.1)$$

2. Preliminaries

Let $\gamma : I = (a, b) \subset R \rightarrow \Pi$ be a curve in a plane Π of R^3_l and let ε be a straight line of Π which does not intersect the curve γ. A helicoidal surface M^2 in R^3_l is defined to be a non-degenerate surface which is generated by the rigid motions $g_t : R^3_l \rightarrow R^3_l, \ t \in R$ around the axis ε. In other words, a helicoidal surface M^2 with axis ε in R^3_l is invariant under the one parameter subgroup of rigid motions in R^3_l.

If the axis ε is spacelike (resp. timelike), then there is a Lorentz transformation by which the axis ε is transformed to the z–axis (resp. x–axis). Hence, without loss of generality, we may assume that the axis of revolution is the z–axis (resp. x–axis). If the axis is lightlike then we may suppose
that this is the line spanned by the vector \((1, 1, 0)\). Therefore we distinguish
the following three special cases.

i- Suppose that the axis of the revolution is the \(z\)-axis (spacelike) and
the curve \(\gamma\) is lying either in the \(y\) \(z\)-plane or in the \(x\) \(z\)-plane. Then a
parametrization of \(\gamma\), with respect to its arclength, is
\[\gamma(u) = (0, f(u), g(u)) \]
and \(\gamma(u) = (f(u), 0, g(u))\) where \(f = f(u)\) is a positive function of classe
\(C^1\) and \(g = g(u)\) is a function of classe \(C^2\) on \(I = (a, b)\).

Hence, the helicoidal surface \(M^2\) given by [2] is defined by
\[
\begin{align*}
 r(u, v) &= (f(u) \sinh v, f(u) \cosh v, g(u) + cv) \\
 f(u) &> 0, \ c \in R^+.
\end{align*}
\] (1.2a)
or
\[
\begin{align*}
 r(u, v) &= (f(u) \cosh v, f(u) \sinh v, g(u) + cv) \\
 f(u) &> 0, \ c \in R^+.
\end{align*}
\] (1.2b)

We say that these helicoidal surfaces are of type I (Eq. (1.2a)) or II (Eq. (1.2b))
respectively.

ii- Suppose that the axis of the revolution is the \(x\)-axis (timelike) and
the curve \(\gamma\) is lying in the \(x\) \(y\)-plane. So, the curve \(\gamma\) is parametrized
by \(\gamma(u) = (g(u), f(u), 0)\). Hence, the helicoidal surface \(M^2\) is given by
[2]
\[
\begin{align*}
 r(u, v) &= (g(u) + cv, f(u) \cos v, f(u) \sin v) \\
 0 \leq v \leq 2\pi, \\
 f(u) &> 0, \ c \in R^+.
\end{align*}
\] (1.3)

This is called a helicoidal surface of type III.

iii- Suppose that the axis of revolution is a lightlike line, or equivalently
the line of the plane \(x\) \(y\) spanned by the vector \((1, 1, 0)\) and the curve \(\gamma\) lies in
the \(x\) \(y\)-plane. Then its parametrization is given by \(\gamma(u) = (f(u), g(u), 0), \ u \in I\)
where \(f\) and \(g\) are functions on \(I\), such that \(f(u) \neq g(u), \forall u \in I\).

Therefore the helicoidal surface \(M^2\) may be parametrized as
\[
\begin{align*}
 r(u, v) &= \left\{ \left(1 + \frac{v^2}{2}\right) f(u) - \frac{v^2}{2} g(u) + cv, \ \frac{v^2}{2} f(u) \\
 &\quad + \left(1 - \frac{v^2}{2}\right) g(u) + cv, \ f(u) - g(u) \right\}.
\end{align*}
\] (1.4)

This surface is called a helicoidal surface of type IV.

It should be noted that when \(c = 0\), the helicoidal surfaces in \(R^3\) are just
the surfaces of revolution. (For more details see [5]).

We say that a helicoidal surface \(M^2\) in \(R^3\) is of type I \(^+\) or \(I^−\) (resp.
\(II^+\) or \(II^−\), \(III^+\) or \(III^−\), \(IV^+\) or \(IV^−\)) if the discriminant \(EG - F^2\) of the first
fundamental form is positive or negative, where \(E, F, G\) are the coefficients
of the line element of \(M^2\).
In the rest of this paper we distinguish two cases according to whether these surfaces are given by (1.2a) or (1.2b) or (1.3).

It is well-known that if \(\phi : M^2 \to R, (u, v) \to \phi(u, v) \) is a smooth function, the Laplacian of the surface with respect to the induced metric can be written as

\[
\Delta \phi = -\frac{1}{\sqrt{EG - F^2}} \left[\left(\frac{G \phi_u - F \phi_v}{\sqrt{EG - F^2}} \right)_u + \left(\frac{-F \phi_u + E \phi_v}{\sqrt{EG - F^2}} \right)_v \right]
\]

3. Helicoidal surfaces of type I

Let \(a(u) = (0, u, g(u)), u \in I \) be a \(C^2 \)-curve on any open interval of \(R \setminus \{0\} \). As mentioned earlier, by applying a helicoidal motion on this curve, we can get the helicoidal surface \(M^2 \) of \(R^3 \) which is described by Eq. (1.2a) or equivalently by

\[
r(u, v) = (u \sinh v, u \cosh v, g(u) + cv) \quad u \in I, \quad v \in R, \quad c > 0 \quad (2.1)
\]

These are helicoidal surfaces of type I.

We shall study the helicoidal surfaces in \(R^3 \) of type I given by (2.1) and satisfying the condition (1.1).

We have

\[
E = 1 + g'^2, \quad F = cg', \quad G = c^2 - u^2, \quad \text{and} \quad EG - F^2 = c^2 - u^2 (1 + g'^2)
\]

where the prime denotes derivative with respect to \(u \), and

\[
\Delta r(u, v) = (\Delta r_1(u, v), \Delta r_2(u, v), \Delta r_3(u, v)) \quad (2.2)
\]

where \(r_1(u, v) = u \sinh v, \quad r_2(u, v) = u \cosh v, \quad r_3(u, v) = g(u) + cv \).

3.1. Helicoidal surfaces of type \(I^+ \).

Suppose that \(EG - F^2 = c^2 - u^2 (1 + g'^2) > 0 \). The case \(EG - F^2 < 0 \) will be treated similarly and the corresponding results will be obtained. Let

\[
A_1(u) = \frac{1}{[c^2 - u^2(1 + g'^2)]^2} \left(u^3 g'^2 - 2c^2 u g^2 - c^2 u^2 g' g'' + u^4 g' g'' + u^3 g'^4 \right),
\]
\[B_1(u) = \frac{1}{c^2 - u^2(1 + g'^2)} \left(2c^3 g' + c^3 u g'' - cu^3 g'' - cu^2 g' - cu^2 g'^3 \right) \]

and

\[C_1(u) = \frac{1}{c^2 - u^2(1 + g'^2)} \left(2c^2 u g' + c^2 u^2 g'' - u^3 g' - u^3 g'^3 - u^4 g'' \right). \]

We have

\[
\begin{align*}
\Delta (u \sinh v) &= A_1(u) \sinh v + B_1(u) \cosh v \quad \text{(2.3)} \\
\Delta (u \cosh v) &= A_1(u) \cosh v + B_1(u) \sinh v \quad \text{(2.4)} \\
\Delta (g(u) + cv) &= C_1(u) \quad \text{(2.5)}
\end{align*}
\]

We observe that

\[A_1(u) = -g'(u)C_1(u). \]

The equation (1.1) by means of (2.1), and (2.3), (2.4), (2.5) gives rise to the following system \((S_1)\) of ordinary differential equations

\[
(S_1) \begin{cases}
\Delta (u \sinh v) &= \lambda_1 u \sinh v \\
\Delta (u \cosh v) &= \lambda_2 u \cosh v \\
\Delta (g(u) + cv) &= \lambda_3 (g(u) + cv)
\end{cases}
\]

where \(\lambda_1, \lambda_2, \text{ and } \lambda_3 \in \text{Spec}(M^2)\). This means that \(M^2\) is at most of 3- type. \((S_1)\) becomes

\[
(S_1') \begin{cases}
A_1(u) \sinh v + B_1(u) \cosh v &= \lambda_1 u \sinh v \\
A_1(u) \cosh v + B_1(u) \sinh v &= \lambda_2 u \cosh v \\
C_1(u) &= \lambda_3 (g(u) + cv)
\end{cases}
\]

Therefore the problem of classifying the helicoidal surfaces \(M^2\) satisfying (1.1) and (2.1) is reduced to the integration of the system \((S_1')\) of ordinary differential equations. From Equation (2.8), we easily deduce that \(\lambda_3 = 0\).

On the other hand, if we multiply (2.6) by \(-\sinh v\) and (2.7) by \(\cosh v\) and then add up the resulting equations, we get

\[A_1(u) = \lambda_2 u \cosh^2 v - \lambda_1 u \sinh^2 v, \]

Similarly by multiplying (2.6) by \(\cosh v\) and (2.7) by \(-\sinh v\), it follows that \(B_1(u) = \lambda_1 - \lambda_2 u \cosh v \sinh v\) then \(\lambda_1 - \lambda_2 = 0\) or \(\lambda_1 = \lambda_2\), we shall call it simply \(\lambda\). Then the system \((S_1')\) becomes

\[
(S_1'') \begin{cases}
A_1(u) &= -g'(u)C_1(u) = \lambda u \\
B_1(u) &= 0 \\
C_1(u) &= 0
\end{cases}
\]
First case: If \(g'(u) = 0 \). Then \(\lambda = 0 \) and \(g(u) = c_1 \) with \(c_1 \in \mathbb{R} \), is the solution of the system \((S_1')\).

Therefore, the helicoidal surface is given by

\[
r(u, v) = (u \sinh v, u \cosh v, c_1 + cv) \quad c_1 \in \mathbb{R}, \ c > 0.
\]

It’s the right helicoidal in \(\mathbb{R}^3 \).

We recover the right helicoidal of type I as a harmonic surface in \(\mathbb{R}^3 \) (because \(\Delta r(u, v) = 0 \)).

Second case: If \(g'(u) \neq 0 \), then the system \((S_1')\) is equivalently reduced to a system of two equations

\[
\begin{align*}
B_1(u) &= 0 \\
C_1(u) &= 0
\end{align*}
\]

or

\[
\begin{align*}
2c^3g' + c^3ug'' - cu^2g'' - cu^2g^3 &= 0 \tag{2.9} \\
2c^2ug' + c^2u^2g'' - u^3g'' - u^3g'^3 - u^4g'' &= 0 \tag{2.10}
\end{align*}
\]

We divide the equation (2.9) by \(c \) (\(c > 0 \)) and (2.10) by \(u \) (\(u \neq 0 \)) the last system is reduced to only one ordinary differential equation

\[
(u^2 - 2c^2) g' + (u^3 - c^2u) g'' + u^2g'^3 = 0 \tag{2.11}
\]

The equation (2.11) is equivalent to the mean curvature \(H \) of \(M^2 \) is zero which means that the surfaces are minimal.

\[
H \text{ is given by } H(u) = \frac{GL + EN - 2FM}{2(EG - F^2)} \quad \text{with}
\]

\[
L = -\frac{u g''}{w}, \quad M = \frac{c}{w}, \quad N = \frac{u^2 g'}{w}, \quad w = \left[\sqrt[3]{c^2 - u^2 (1 + g'^2)} \right]^{\frac{1}{2}}
\]

Here \(c^2 - u^2 (1 + g'^2) > 0 \) and hence

\[
H(u) = \frac{(u^2 - 2c^2) g' + (u^3 - c^2u) g'' + u^2g'^3}{2[c^2 - u^2 (1 + g'^2)]^{\frac{1}{2}}}
\]
Set \(g' = R_1 \) in the equation (2.11). We then get a Bernoulli’s equation of the form

\[
(\text{Eq}_1) \quad (u^2 - 2c^2)R_1 + (u^3 - c^2 u) R'_1 + u^2 R'^2_1 = 0
\]

By multiplying \((\text{Eq}_1)\) by \(R_1^{-3}\) we get

\[
(u^2 - 2c^2)R_1^{-2} + (u^3 - c^2 u) R'_1 R_1^{-3} = -u^2
\]

Let \(T_1 = R_1^{-2} \). So we obtain

\[
(\text{Eq}'_1) \quad (u^2 - 2c^2) T_1 - \frac{1}{2} (u - c^2 u) T'_1 = -u^2.
\]

We first give the solution of the equation without second member. One solution is

\[
T_1(u) = \frac{\alpha u^4}{|u^2 - c^2|}, \quad \alpha > 0 \quad (2.12)
\]

But from the assumption \(c^2 - u^2 (1 + g'^2) > 0 \), it follows that \(c^2 - u^2 > 0 \) and then

\[
T_1(u) = \frac{\alpha u^4}{c^2 - u^2}, \quad \alpha > 0
\]

To integrate Equation \((\text{Eq}'_1)\) we put \(\alpha = \alpha(u) \) and \(T_1 = T_1(u), \quad T'_1 = T'_1(u) \) in \((\text{Eq}'_1)\). We find

\[
\alpha(u) = \frac{1}{u^2} + \beta
\]

where

\[
\beta > -\frac{1}{c^2} \quad (\text{then we obtain} \quad \alpha(u) > 0, \quad \forall \quad u^2 < c^2) \quad \text{and then}
\]

\[
T_1(u) = \frac{u^2 + \beta u^4}{c^2 - u^2} \quad \forall \quad 0 < |u| < c \quad \text{where} \quad \beta > -\frac{1}{c^2}
\]

but \(T_1 = R_1^{-2} \) with \(R_1 = g' \), so \(g'(u) = \pm \frac{1}{u} \sqrt{\frac{c^2 - u^2}{1 + \beta u^2}} \).
Therefore \(g(u) = a_1 \pm \int \frac{1}{|u|} \sqrt{\frac{c^2 - u^2}{1 + \beta u^2}} \, du \) for all \(u \) such that \(0 < |u| < c \)

where \(\beta > -\frac{1}{c^2} \), \(a_1 \in \mathbb{R} \) is the constant of integration.

For example, if we take \(\beta = 0 \) and \(0 < |u| < c \), we obtain
\[
g(u) = \pm \left[\frac{u}{|u|} \sqrt{c^2 - u^2} - c \log \left(c + \frac{u}{|u|} \sqrt{c^2 - u^2} \right) + c \log |u| \right] + a_2
\]
where \(a_2 \in \mathbb{R} \).

In this case, the helicoidal surfaces are given by

\[
r(u, v) = \left(u \sinh v, u \cosh v, a_1 \pm \int \frac{1}{|u|} \sqrt{\frac{c^2 - u^2}{1 + \beta u^2}} \, du + cv \right)
\]

for all \(u \) such that \(0 < |u| < c \) where \(\beta > -\frac{1}{c^2} \), \(a_1 \in \mathbb{R} \).

For \(\beta = 0 \) we have \(r(u, v) = (u \sinh v, u \cosh v, g(u) + cv) \) with

\[
g(u) = \pm \left[\frac{u}{|u|} \sqrt{c^2 - u^2} - c \log \left(c + \frac{u}{|u|} \sqrt{c^2 - u^2} \right) + c \log |u| \right] + a_2
\]

where \(0 < |u| < c \), and \(a_2 \in \mathbb{R} \).

So we have proved

Proposition 1.1. Let \(r : M^2 \rightarrow \mathbb{R}^3 \) be an isometric immersion given by \(r(u, v) = (u \sinh v, u \cosh v, g(u) + cv) \) \(v \in \mathbb{R}, \ c > 0 \), \(u \in I \subset \mathbb{R} \setminus \{0\} \) where \(EG - F^2 > 0 \).

Then \(\Delta r_i = \lambda_i r_i \), \(\lambda_i \in \mathbb{R} \), if and only if the surface \(M^2 \) is minimal.

More precisely, we have

1. \(r(u, v) = (u \sinh v, u \cosh v, c_1 + cv) \) \(c_1 \in \mathbb{R}, \ c > 0 \), \(v \in \mathbb{R}, \ u \in I \) the right helicoidal of type \(I^+ \) or
2. \(r(u, v) = \left(u \sinh v, u \cosh v, a_1 \pm \int \frac{1}{|u|} \sqrt{\frac{c^2 - u^2}{1 + \beta u^2}} \, du + cv \right) \)
\[\forall 0 < |u| < c \quad \text{where} \quad \beta > -\frac{1}{c^2}, \quad a_1 \in \mathbb{R}. \]

Example. For \(\beta = 0 \), we get
\[
 r(u, v) = (u \sinh v, u \cosh v, g(u) + cv)
\]
with
\[
g(u) = \pm \left[\frac{u}{|u|} \sqrt{c^2 - u^2} - c \log \left(c + \frac{u}{|u|} \sqrt{c^2 - u^2} \right) + c \log |u| \right] + a_2
\]
or equivalently
\[
g(u) = a_2 \pm \left[\frac{u}{|u|} \sqrt{c^2 - u^2} - c \log \left(\frac{c}{|u|} + \frac{1}{u} \sqrt{c^2 - u^2} \right) \right]
\]

\[\forall \quad 0 < |u| < c \quad \text{, where} \quad a_2 \in \mathbb{R} \]

3.2. Helicoidal surfaces of type \(I^- \)

Suppose now, that \(EG - F^2 = c^2 - u^2(1 + g'^2) < 0 \), we get
\[
\begin{align*}
\Delta (u \sinh v) &= -A_1(u) \sinh v - B_1(u) \cosh v \\
\Delta (u \cosh v) &= -A_1(u) \cosh v - B_1(u) \sinh v \\
\Delta (g(u) + cv) &= -C_1(u)
\end{align*}
\]

where \(A_1(u), B_1(u), \) and \(C_1(u) \) are the functions used in the system \((S_1')\) with the condition \(EG - F^2 > 0 \).

As we did in the other case, the problem is reduced to the integration of the system \((S)\) of ordinary differential equations
\[
(S) \begin{cases}
- (A_1(u) \sinh v + B_1(u) \cosh v) = \lambda_1 u \sinh v \\
- (A_1(u) \cosh v + B_1(u) \sinh v) = \lambda_2 u \cosh v \\
- C_1(u) = \lambda_3 (g(u) + cv)
\end{cases}
\]
or
\[
(S') \begin{cases}
A_1(u) \sinh v + B_1(u) \cosh v = (-\lambda_1) u \sinh v \\
A_1(u) \cosh v + B_1(u) \sinh v = (-\lambda_2) u \cosh v \\
C_1(u) = (-\lambda_3) (g(u) + cv)
\end{cases}
\]
The system \((S')\) is equivalent to \((S_1')\) with \((-\lambda_i)\) instead of \(\lambda_i\). So, we get the same results as (2.12) but from the assumption \(c^2 - u^2 (1 + g'^2) < 0\), it follows that either \(c^2 - u^2 > 0\) or \(c^2 - u^2 < 0\).

If \(c^2 - u^2 > 0\), we conclude as in the proposition 1.1.

If \(c^2 - u^2 < 0\), we get

\[
T_1(u) = \frac{\alpha(u)}{u^2 - c^2} \quad \text{where} \quad \alpha(u) = -1 + \delta \quad \text{with} \quad \delta > \frac{1}{c^2}
\]

(then we obtain \(\alpha(u) > 0\), \(\forall\ u > c^2\)) and then

\[
T_1(u) = \frac{-u^2 + \delta u^4}{u^2 - c^2} \quad \forall\ |u| > c \quad \text{where} \quad \delta > \frac{1}{c^2} \quad \text{and hence}
\]

\[
g'(u) = \pm \frac{1}{|u|} \sqrt{\frac{u^2 - c^2}{\delta u^2 - 1}} \quad \forall\ |u| > c \quad \text{where} \quad \delta > \frac{1}{c^2}.
\]

Therefore,

\[
g(u) = a_2 \pm \int \frac{1}{|u|} \sqrt{\frac{u^2 - c^2}{\delta u^2 - 1}} \, du \quad \forall\ |u| > c
\]

where \(\delta > \frac{1}{c^2}\), \(a_2 \in R\)

So we have showed the following

Proposition 1.2. Let \(r : M^2 \longrightarrow \mathbb{R}^3\) be an isometric immersion given by

\[
r(u, v) = (u \sinh v, u \cosh v, g(u) + cv) \quad v \in R, \quad c > 0,
\]

\(u \in I \subset R \setminus \{0\}\), where \(EG - F^2 < 0\).

Then \(\Delta r_i = \lambda_i r_i\), \(\lambda_i \in R\) if and only if the surface \(M^2\) is minimal.

More precisely, we have

1. \(r(u, v) = (u \sinh v, u \cosh v, c_1 + cv) \quad c_1 \in R, \quad c > 0, \quad v \in R, \quad u \in I\)

 the right helicoidal of type I−; or

2. \(r(u, v) = \left(u \sinh v, u \cosh v, a_1 \pm \int \frac{1}{|u|} \sqrt{\frac{c^2 - u^2}{1 + \beta u^2}} \, du + cv\right)\)
Lorentz-Minkowski space

for \(0 < |u| < c \) where \(\beta > -\frac{1}{c^2} \), \(a_1 \in \mathbb{R} \); or

3.

\[
 r(u, v) = \left(u \sinh v, u \cosh v, a_2 \pm \int \frac{1}{|u|} \sqrt{\frac{u^2 - c^2}{\delta u^2 - 1}} \, du + cv \right)
\]

for \(|u| > c \) where \(\delta > \frac{1}{c^2} \), \(a_2 \in \mathbb{R} \).

4. Helicoidal surfaces of type II

The case where \(a(u) = (u, 0, g(u)) \) for which the corresponding helicoidal surfaces of type \(II^+ \) (or \(II^- \)) are given by

\[
 r(u, v) = (f(u) \cosh v, f(u) \sinh v, g(u) + cv) \quad f(u) > 0, \ c > 0,
\]
or equivalently by

\[
 r(u, v) = (u \cosh v, u \sinh v, g(u) + cv)
\]
is really similar to the previous one, henceforth we omit it.

5. Helicoidal surfaces of type III

Let \(a(u) = (g(u), f(u), 0), \ u \in I \) be a \(C^2 \)–curve in \(\mathbb{R}^3 \) where \(I \) is any open interval of \(\mathbb{R} \setminus \{0\} \). By applying a helicoidal motion on it, with axis \(Ox \) (timelike axis), we get the helicoidal surface \(M^2 \) in \(\mathbb{R}^3 \) given by the equation

\[
 r(u, v) = (g(u) + cv, u \cos v, u \sin v) \quad 0 \leq v \leq 2\pi, \ c > 0 \quad (3.1)
\]

where we have assumed that \(f(u) = u \).

These are helicoidal surfaces of type \(III \).

Let us study the helicoidal surfaces in \(\mathbb{R}^3 \) of type \(III \) given by (3.1) satisfying the condition (1.1).

We have \(E = 1 - g'^2(u) \), \(F = -cg'(u) \), \(G = u^2 - c^2 \) and \(EG - F^2 = u^2 (1 - g'^2) - c^2 \) where the prime denotes derivative with respect to \(u \).

5.1. Helicoidal surfaces of type \(III^+ \).

Assume that \(EG - F^2 = u^2 (1 - g'^2) - c^2 > 0 \). We get
\[\begin{align*}
\Delta (g(u) + cv) &= C_2(u) \\
\Delta (u \cos v) &= A_2(u) \cos v + B_2(u) \sin v \\
\Delta (u \sin v) &= A_2(u) \sin v - B_2(u)
\end{align*} \]

where

\[
A_2(u) = \frac{1}{[u^2 (1 - g'^2) - c^2]^2} \left(2 c^2 u g'^2 + c^2 u^2 g'g'' + u^3 g'^4 - u^3 g'^2 - u^4 g'g'' \right),
\]

\[
B_2(u) = \frac{1}{[u^2 (1 - g'^2) - c^2]^2} \left(c u^2 g' + c u^3 g'' - 2 c^3 g' - c^2 u^2 g'' - c^3 u g'' \right),
\]

and

\[
C_2(u) = \frac{1}{[u^2 (1 - g'^2) - c^2]^2} \left(2 c^2 u g' + c^2 u^2 g'' + u^3 g'^3 - u^3 g' - u^4 g'' \right).
\]

We observe that

\[
A_2(u) = g'(u) \ C_2(u)
\]

The equation (1.1) by means of (3.1) and (3.2), (3.3), (3.4) gives rise to the following system \((S_2)\) of ordinary differential equations

\[\begin{align*}
\Delta (u \cos v) &= \lambda_1 u \cos v \\
\Delta (u \sin v) &= \lambda_2 u \sin v \\
\Delta (g(u) + cv) &= \lambda_3 \ (g(u) + cv)
\end{align*}\]

which becomes

\[\begin{align*}
A_2(u) \cos v + B_2(u) \sin v &= \lambda_1 u \cos v \\
A_2(u) \sin v - B_2(u) \cos v &= \lambda_2 u \sin v \\
C_2(u) &= \lambda_3 \ (g(u) + cv)
\end{align*}\]

Therefore the problem of classifying the helicoidal surfaces \(M^2\) satisfying (1.1) and (3.1) is reduced to the integration of the system \((S_2')\) of ordinary differential equations.

From the equation (3.8), we easily deduce that \(\lambda_3 = 0.0\). On the other hand, if we multiply (3.6) by \(\cos v\) and (3.7) by \(\sin v\), and then add the resulting, we get

\[
A_2(u) = \lambda_1 u \cos^2 v + \lambda_2 u \sin^2 v
\]
Similarly by (3.6) sin \(v \) + (3.7) (− cos \(v \)) it follows that
\[B_2(u) = (\lambda_1 - \lambda_2) \ u \cos v \sin v. \]

Then \(\lambda_1 = \lambda_2 = \lambda \). Hence we obtain the system:
\[
\begin{cases}
A_2(u) = g'(u)C_2(u) = \lambda \ u \\
B_2(u) = 0 \\
C_2(u) = 0
\end{cases}
\] (\(S_2 \)")

First case: If \(g'(u) = 0 \). Then \(\lambda = 0 \) and \(g(u) = d_1 \) with \(d_1 \in R \) is the solution of the system (\(S_2 \")).

Therefore the helicoidal surface is given by
\[r(u, v) = (d_1 + cv, \ u \cos v, \ u \sin v) \quad d_1 \in R, \quad c > 0 \]
it’s a right helicoidal in \(R^3 \).

Second case: If \(g'(u) \neq 0 \). Then the system (\(S_2 \") is reduced to a system of two equations
\[
\begin{cases}
B_2(u) = 0 \\
C_2(u) = 0
\end{cases}
\]
or
\[
\begin{align*}
-2c^3g' - c^3ug'' + cu^2g'' + cu^2g' - cu^2g'^3 &= 0 \quad (3.9) \\
2c^2ug' + c^2u^2g'' - u^3g' + u^3g'^3 - u^4g'' &= 0 \quad (3.10)
\end{align*}
\]

We divide Equation (3.9) by \(c \) \((c > 0) \) and (3.10) by \(u \) \((u \neq 0) \), the last system reduces to only one ordinary differential equation
\[
(2c^2 - u^2)g' - (u^3 - c^2u)g'' + u^2g'^3 = 0 \quad (3.11)
\]
Here \(H(u) = \frac{(2c^2 - u^2)g' + (u^3 - c^2u)g'' - u^2g'^3}{2[u^2(1 - g'^2) - c^2]^2} \).

Hence Equation (3.11) is equivalent to *the mean curvature* \(H \) of \(M^2 \) is zero. This means that the surfaces are minimal.

Set \(g' = R_2 \) in the equation (3.11). We also get here a Bernoulli’s equation of the form
\[
(\text{Eq}_2) \quad (u^2 - 2c^2)R_2 + (u^3 - c^2u)R_2' - u^2R_2^3 = 0.
\]

By multiplying (\(\text{Eq}_2 \)) by \(R_2^{-3} \), we get
\[
(u^2 - 2c^2)R_2^{-2} + (u^3 - c^2u)R_2' R_2^{-3} = u^2
\]
Let \(T_2 = R_2^{-2} \), then we obtain
\[
(Eq'_2) \quad (u^2 - 2c^2) T_2 - \frac{1}{2} (u^3 - c^2 u) T'_2 = u^2.
\]
Recall that \(EG - F^2 = u^2 (1 - g'^2) - c^2 > 0 \), then \(c^2 - u^2 < 0 \) and then the solutions of \((Eq'_2)\) are of the form
\[
T_2(u) = \frac{\alpha(u) u^4}{u^2 - c^2} \quad \text{where} \quad \alpha(u) = \frac{1}{u^2} + \beta \quad \text{with} \quad \beta \in R^+
\]
(then we obtain \(\alpha(u) > 0 \), \(\forall \ |u| > c \))

So
\[
T_2(u) = \frac{u^2 + \beta u^4}{u^2 - c^2} \quad \forall \ |u| > c \quad \text{where} \quad \beta \in R^+ \quad \text{and then}
\]

\[
g'(u) = \pm \frac{1}{|u|} \sqrt{\frac{u^2 - c^2}{1 + \beta u^2}}
\]

Therefore,
\[
g(u) = a_3 \pm \int \frac{1}{|u|} \sqrt{\frac{u^2 - c^2}{1 + \beta u^2}} du \quad \forall \ |u| > c \quad \text{where}
\]
\[
\beta \in R^+ \quad \text{and} \quad a_3 \in R.
\]

For instance, if we get \(\beta = 0 \) and \(\forall |u| > c \), we obtain
\[
g(u) = \pm \left(-c \ \text{Arc} \cos \frac{c}{u} + \frac{u}{|u|} \sqrt{u^2 - c^2} \right) + a_4, \quad a_4 \in R.
\]

So we have proved

Proposition 2.1. Let \(r : M^2 \rightarrow R^3_1 \) be an isometric immersion given by
\[
r(u, v) = (g(u) + cv, u \ \cos \ v, u \ \sin \ v) \quad 0 \leq v \leq 2\pi, \ c > 0
\]
if \(u \in I \subset R \setminus \{0\} \) where \(EG - F^2 > 0 \).

Then \(\Delta r_i = \lambda_i r_i \), \(\lambda_i \in R \) if and only if the surface \(M^2 \) is minimal.

More precisely, we have
1. \(r(u, v) = (d_1 + cv, u \ \cos \ v, u \ \sin \ v) \quad d_1 \in R, \ c > 0, \ 0 \leq v \leq 2\pi, \ u \in I \)
the right helicoidal of type III⁺; or

2.

\[r(u, v) = \left(a_3 \pm \int \frac{1}{|u|} \sqrt{\frac{u^2 - c^2}{1 + \beta u^2}} \, du + cv, u \cos v, u \sin v \right) \forall |u| > c, \]

where \(\beta \in \mathbb{R}^+ \), and \(a_3 \in \mathbb{R} \).

Example. For \(\beta = 0 \), we get

\[r(u, v) = \left(a_4 \pm \left(-c \arccos \frac{c}{u} + \frac{u}{|u|} \sqrt{u^2 - c^2} \right) + cv, u \cos v, u \sin v \right), \]

where \(|u| > c \), \(a_4 \in \mathbb{R} \).

5.2. Helicoidal surfaces of type III⁻.

Let us now examine the case where \(EG - F^2 = u^2(1 - g^2) - c^2 < 0 \), we get

\[\Delta (g(u) + cv) = -C_2(u) \]
\[\Delta (u \cos v) = -A_2(u) \cos v - B_2(u) \sin v \]
\[\Delta (u \sin v) = -A_2(u) \sin v + B_2(u) \cos v \]

where \(A_2(u), B_2(u), \) and \(C_2(u) \) are the functions used in the system \((S_2')\) with \((-\lambda_i)\) instead of \(\lambda_i\). Here we distinguish two cases because from our hypothesis one of the following two cases occur \(u^2 - c^2 > 0 \) or \(u^2 - c^2 < 0 \).

If \(u^2 - c^2 > 0 \), we conclude as in the proposition 2.1.

If \(u^2 - c^2 < 0 \), we get

\[T_2(u) = \frac{\alpha(u) u^4}{c^2 - u^2} \quad \text{where} \quad \alpha(u) = -\frac{1}{u^2} + \rho \quad \text{with the condition} \quad \alpha(u) > 0. \]
If $\rho > \frac{1}{c^2}$ there exists $c_0 \in]0, c[$ such that $\alpha(c_0) = 0$, then it follows that $\alpha(u) > 0$ if and only if $c_0 < |u| < c$.

Therefore

$$T_2(u) = \frac{-u^2 + \rho u^4}{c^2 - u^2} \quad \forall c_0 < |u| < c \text{ where } \rho > \frac{1}{c^2} \text{ and hence}$$

$$g'(u) = \pm \frac{1}{|u|} \sqrt{\frac{c^2 - u^2}{\rho u^2 - 1}} \quad \forall c_0 < |u| < c \text{ where } \rho > \frac{1}{c^2}$$

$$g(u) = a_5 \pm \int \frac{1}{|u|} \sqrt{\frac{c^2 - u^2}{\rho u^2 - 1}} \, du \quad \forall c_0 < |u| < c \text{ where } \rho > \frac{1}{c^2}$$

where $a_5 \in \mathbb{R}$.

Then we have proved the following

Proposition 2.2. Let $r : M^2 \rightarrow R_3$ be an isometric immersion given by

$$r(u, v) = (g(u) + cv, u \cos v, u \sin v) \quad 0 \leq v \leq 2\pi, \quad c > 0,$$

$u \in I \subset R \setminus \{0\}$, where $EG - F^2 < 0$.

Then $\Delta r_i = \lambda_i r_i$, $\lambda_i \in \mathbb{R}$ if and only if the surface M^2 is minimal.

More precisely, we have

1. $r(u, v) = (d_1 + cv, u \cos v, u \sin v) \quad d_1 \in \mathbb{R}, \quad c > 0, \quad 0 \leq v \leq 2\pi,$

$u \in I$

the right helicoidal of type III$^-$ or

2. $r(u, v) = \left(a_3 \pm \int \frac{1}{|u|} \sqrt{\frac{u^2 - c^2}{1 + \beta u^2}} \, du + cv, u \cos v, u \sin v \right) \quad \forall \, |u| > c$

where $\beta \in \mathbb{R}^+$, and $a_3 \in \mathbb{R}$. or

3. $r(u, v) = \left(a_5 \pm \int \frac{1}{|u|} \sqrt{\frac{c^2 - u^2}{\rho u^2 - 1}} \, du + cv, u \cos v, u \sin v \right) \quad \forall \, |u| \in]c_0, c[$
whith \(c_0 \) a constant, \(c_0 \in]0, c[, \ a_5 \in R \), where \(\rho > \frac{1}{c^2} \).

References

Received: August, 2008