Weak Primary Submodules of Multiplication Modules and Intersection Theorem

M. H. Naderi

Department of Mathematics, Faculty of Science
University of Qom, Qom, Iran
Mh-naderi@qom.ac.ir

Reza Jahani-Nezhad

Department of Mathematics, Faculty of Science
University of Kashan, Kashan, Iran
jahanian@kashanu.ac.ir

Abstract

As a new generalization of the notion of primary ideals to multiplication modules, we introduce a weak primary submodule in a multiplication module. It is shown that if Q is a proper submodule of multiplication R-module M such that M/Q or \sqrt{Q} is finitely generated, then Q is primary if and only if Q is weak primary. Finally, we state and prove an extension of Krull’s Intersection Theorem to multiplication modules.

Mathematics Subject Classification: 16D10, 16D70, 13C05, 16S38, 16D50

Keywords: Multiplication module; Prime submodule; Primary submodule; Weak primary submodule

1 Introduction

Throughout this paper all rings will be commutative with nonzero identity and all modules will be unitary. Let R be a ring and M be an R-module. For every submodule N of M, we will be denoted the annihilator of factor module M/N by $(N :_R M)$ (in fact; $(N :_R M) = \{ r \in R \mid rM \subseteq N \}$). Also $(0 :_R M)$ is denoted by $Ann_R(M)$. An element $r \in R$ is called a zero-divisor on M if $rm = 0$, for some nonzero $m \in M$. The set of all zero-divisors of R on M is denoted by $Zdv_R(M)$. In this time, we recall the concept multiplication module
and state some properties of them. For basic properties of a multiplication module one may refer to [2], [3] and [7].

Definition 1.1. Let R be a ring and M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists an ideal I of R such that $N = IM$. In this case we can take $I = (N :_R M)$.

Let M be a multiplication R-module and let N and K be submodules of M with $N = I_1M$ and $K = I_2M$ for some ideals I_1 and I_2 of R. The product of N and K denoted by NK is defined by $NK = I_1I_2M$. The product of N and K is independent of ideals I_1 and I_2, see [1; Theorem 3.4]. Moreover, it is clear that NK is a submodule of M and contained in $N \cap K$. Also, if $N \subseteq K$ then $NL \subseteq KL$, for every submodule L of M. Furthermore, for every elements $m, m' \in M$, we show by mm' the product of two submodules Rm and Rm'. Therefore product mm' is a submodule of M.

We recall that a submodule N of M is called nilpotent if $N^k = 0$, for some positive integer k, where N^k means the product of N, k times. Also an element $m \in M$ is called nilpotent if submodule Rm is nilpotent (see [1, Theorem 3.4]). An element $m \in M$ is called a zero-divisor over M if $mm' = 0$, for some nonzero $m' \in M$. The set of all zero-divisors of M over M is denoted by $Zdv_M(M)$. By [4, Proposition 2.8], $R.Zdv_M(M) = Zdv_R(M)M$.

Let M be an R-module. A proper submodule Q of M is said to be prime (resp. primary) submodule if $am \in Q$, where $a \in R$ and $m \in M \setminus Q$, then $aM \subseteq Q$ (resp. $a^k M \subseteq Q$ for some positive integer k). We say that M is a prime (resp. primary) module if zero submodule of M is prime (resp. primary) submodule of M. The radical of a proper submodule N of M, denoted by \sqrt{N}, is defined in [3] to be the intersection of all prime submodules of M containing N.

Theorem 1.2. [1; Theorem 3.13] Let N be a submodule of a multiplication R-module M. Then $\sqrt{N} = \{m \in M \mid m^k \subseteq N \text{ for some } k \geq 0\}$.

We will denote by $\text{rad}(I)$ the radical of an ideal I of a ring R. If Q is a primary ideal of a ring R, it is well-known that \sqrt{Q} is a prime ideal of R. However, in the module case, Q a primary submodule dose not necessarily imply that \sqrt{Q} is a prime submodule (see [8; Theorem 1.9 and Example 1.11] for more details). Finally we mention the other results that will be used in the sequel.

Theorem 1.3. [3; Corollary 2.11] Let N be a proper submodule of a multiplication R-module M. Then $\sqrt{N} = IM$, where $I = \text{rad}((N :_R M))$.

In this paper, for simplicity, we will denote $\text{rad}(\text{Ann}_R(M))$ by $\text{nil}_R(M)$, for every R-module M. Therefore $\sqrt{0} = (\text{nil}_R(M))M$, for each multiplication
2 Weak primary Submodules

In this section, we introduce special submodules of a multiplication module over commutative rings and we state equivalent statements with them.

Definition 2.1. Let R be a commutative ring and M be a multiplication R-module. A proper submodule Q of M is called a weak primary submodule if $mn \subseteq Q$, where $m, n \in M$ and $m \notin Q$, then $n^k \subseteq Q$ for some natural element k. Also M is called a weak primary module if the zero submodule of M is a weak primary submodule of M.

It is easy to check that a nonzero R-module M is primary if and only if $Zdv_R(M) = \text{nil}_R(M)$. The next Proposition is similar to Theorem 3.6 of [4] for a weak primary multiplication R-module.

Proposition 2.2. Let M be a nonzero multiplication R-module. Then the following statements are equivalent:

1) M is a weak primary module;

2) $Zdv_M(M) = \sqrt{0}$;

3) if $mn = 0$, where $m, n \in M$, then $m = 0$ or $n \in \sqrt{0}$;

4) for every submodules N_1 and N_2 of M, if $N_1N_2 = 0$, then $N_1 = 0$ or $N_2 \subseteq \sqrt{0}$.

Proof. (1) \Rightarrow (2). Let M be a weak primary module. First suppose $n \in Zdv_M(M)$, then $mn = 0$, for some nonzero $m \in M$ and so $n^k = 0$, for some positive integer k. Therefore $n \in \sqrt{0}$, by Theorem 1.2.

Now let $n \in \sqrt{0}$. Then by Theorem 1.2, $n^k = 0$, for some positive integer k. We assume that k is the least positive integer such that $n^k = 0$. If $k = 1$, then $n = 0 \in Zdv_M(M)$. If $k > 1$, then there is a nonzero element $m \in n^{k-1}$. Since $mn \subseteq n^k = 0$, so $n \in Zdv_M(M)$. Thus $Zdv_R(M) = \sqrt{0}$.

(2) \Rightarrow (3) and (3) \Rightarrow (4) is obvious.

(4) \Rightarrow (1). Let $mn = 0$, for some $m, n \in M$. Then $m = 0$ or $n \in \sqrt{0}$ and so $n^k = 0$, for some positive integer k, by Theorem 1.2. Therefore $\{0\}$ is a weak primary submodule of M and so M is a weak primary module.

Let M be an R-module, N be a submodule of M and $\pi : M \rightarrow \frac{M}{N}$ is natural homomorphism. For every submodule K (resp. element m) of M, the
submodule \(\pi(K) \) (resp. the element \(\pi(m) \)) is denoted by \(\overline{K} \) (resp. \(\overline{m} \)).

Proposition 2.3. Let \(M \) be a multiplication \(R \)-module, \(N \) be a proper submodule of \(M \) and \(\pi : M \to \frac{M}{N} \) is natural homomorphism. We use the notation above, then the following statements are holds:

1) for every submodule \(N_1 \) and \(N_2 \) of \(M \), \(\overline{N_1N_2} = 0 \) if and only if \(N_1N_2 \subseteq N \).

2) for every \(m, n \in M \), \(\overline{mn} = 0 \) if and only if \(mn \subseteq N \).

Proof. It is sufficient to prove (1).

1. \((\Rightarrow) \) It is evident that \(\frac{M}{N} \) is a multiplication \(R \)-module. If \(N_1 = I_1M \), \(N_2 = I_2M \) and \(N = JM \), for some ideals \(I_1, I_2 \) and \(J \) of \(R \), then

\[
\overline{N_1} = I_1 \frac{M}{N} = I_1 \frac{M}{N} = \left(I_1 + J \right) \frac{M}{N}.
\]

Thus if \(\overline{N_1N_2} = 0 \), then \(\left(\frac{I_1I_2 + J}{N} \right) \frac{M}{N} = \overline{N_1N_2} = 0 \), and so \(N_1N_2 + N = (I_1I_2 + J)M = N \). Therefore \(N_1N_2 \subseteq N \).

\((\Leftarrow) \) This is proved similarly. \(\square \)

The next result follows immediately, by Proposition 2.2 and Proposition 2.3.

Corollary 2.4. Let \(N \) be a proper submodule of a multiplication \(R \)-module \(M \). Then \(N \) is a weak primary submodule of \(M \) if and only if \(R \)-module \(\frac{M}{N} \) is a weak primary module.

Furthermore we can infer any results proved about zero submodule of \(M \); to similar results for proper submodules of \(M \).

Corollary 2.5. Let \(M \) be a multiplication \(R \)-module and \(N \) be a proper submodule of \(M \). Then the following statements are equivalent:

1) \(N \) is a weak primary submodule;

2) \(Zdv_{\frac{M}{N}}(M/N) = \{ \overline{m} \in \frac{M}{N} \ | \ m \in \sqrt{N} \} \);

3) for every \(m, n \in M \), if \(mn \subseteq N \), then \(m \in N \) or \(n \in \sqrt{N} \).

4) for every submodules \(N_1 \) and \(N_2 \) of \(M \), if \(N_1N_2 \subseteq N \), then \(N_1 \subseteq N \) or \(N_2 \subseteq \sqrt{N} \)

A multiplicative \(R \)-module \(M \) is called \(w \)-primary compatible if its weak primary submodules and its primary submodules coincide. The next proposition explore that finitely generated multiplication modules are \(w \)-primary
compatible.

Theorem 2.6. Let M be a multiplication R-module. If M is a primary module, then M is a weak primary module. If M is finitely generated, then the converse is true.

Proof. Suppose that M be a primary module and $mn = 0$, for some $m, n \in M$ and $m \neq 0$. There are ideals I and J of R such that $Rm = IM$ and $Rn = JM$. Then $IJ \subseteq \text{Ann}_R(M)$ and $I \not\subseteq \text{Ann}_R(M)$. Since M is primary, then $\text{Ann}_R(M)$ is a primary ideal and so $J \subseteq \text{nil}_R(M)$. By Theorem 1.3, $n \in JM \subseteq \sqrt{0}$ and so by Proposition 2.2, M is a weak primary module.

Now, let M be a weak primary finitely generated module and $rm = 0$, for some $r \in R$ and $0 \neq m \in M$. There is an ideal I of R such that $Rm = IM$. Then $(IM)(IM) = (IIM) = IIM = rIM = rRM = 0$. By Proposition 2.2 and Theorem 1.3, $rM \subseteq \sqrt{0} \subseteq (\text{nil}_R(M))M$. Since M is finitely generated, $r \in \text{nil}_R(M)$, by [5; Theorem 6.6], and so $r^k M = 0$, for some positive integer k. Therefore M is a primary module. □

We deduce the following from Theorem 2.6 and Corollary 2.4.

Corollary 2.7. Let N be a proper submodule of a multiplication R-module M. If M/N is finitely generated, then N is a weak primary submodule if and only if N is a primary submodule.

It is well-known that if I is an ideal of a commutative ring R such that $\text{rad}(I)$ is finitely generated, then $\text{rad}(I)^k \subseteq I$, for some positive integer k (see [6; Lemma 8.21]). The next Proposition extend this result to submodules of multiplication modules.

Proposition 2.8. Let M be a multiplication R-module and N be a submodule of M. If \sqrt{N} is finitely generated, then $(\sqrt{N})^k \subseteq N$, for some positive integer k.

Proof. There are elements $m_1, m_2, ..., m_l \in M$ and ideals $I_1, I_2, ..., I_l$ of R such that $\sqrt{N} = Rm_1 + \cdots + Rm_l$ and $Rm_j = I_j M$, for each j, $(1 \leq j \leq l)$. By Theorem 1.2, for every j, there is a positive integer k_j such that $m_j^{k_j} \subseteq N$. Let $k = \sum_{j=1}^{l} (k_j - 1) + 1$. Then

$$\sqrt{N}^k = (\sqrt{N})^k = (Rm_1 + Rm_2 + ... + Rm_l)^k = (I_1 M + I_2 M + ... + I_l M)^k = \sum_{s_1 + ... + s_l = k} (I_1 M)^{s_1} (I_2 M)^{s_2} ... (I_l M)^{s_l} = \sum_{s_1 + ... + s_l = k} m_1^{s_1} m_2^{s_2} ... m_l^{s_l} \subseteq N. \quad \Box$$
Lemma 2.9. Let M be a multiplication R-module and N be a submodule of M. For every positive integer k, $(\sqrt{N})^k \subseteq N$ if and only if $(\text{rad}(N :_R M))^k \subseteq (N :_R M)$.

Proof. By Theorem 1.3, $(\sqrt{N})^k \subseteq N$ if and only if $(\text{rad}(N :_R M))^k M \subseteq N$ and this equivalent with $(\text{rad}(N :_R M))^k \subseteq (N :_R M)$. □

Corollary 2.10. Let M be a multiplication R-module. If the ideal $\text{nil}_R(M)$ or the submodule $\sqrt{0}$ is finitely generated, then $\sqrt{0}$ is nilpotent submodule.

The next Theorem gives the other condition that weak primary submodules and primary submodules coincide.

Theorem 2.11. Let M be a multiplication R-module and N be a submodule of M. If $\sqrt{0}$ is nilpotent submodule, then the following statements are equivalent:

1) M is a primary module;

2) M is a weak primary module;

3) for every submodules N_1 and N_2 of M, if $N_1N_2 = 0$, then $N_1 = 0$ or $N_2^k = 0$, for some positive integer k.

Proof. (1) \Rightarrow (2) It follows from Proposition 2.6.

(2) \Rightarrow (3). Let $N_1N_2 = 0$ and $N_1 \neq 0$, for submodules N_1 and N_2 of M. By Proposition 2.2, $N_2 \subseteq \sqrt{0}$ and so $N_2^k = 0$, for some positive integer k, because $\sqrt{0}$ is nilpotent.

(3) \Rightarrow (1). Let $rm = 0$, for some $r \in R$ and $0 \neq m \in M$. There is an ideal I of R such that $Rm = IM$. Thus $(rM)(IM) = (\langle r \rangle M)(IM) = \langle r \rangle IM = \langle r \rangle Rm = rRm = 0$. Since $IM \neq 0$, then $r^k M = (rM)^k = 0$, for some positive integer k. Therefore M is primary. □

The next result follows of Corollary 2.4 and Theorem 2.11.

Corollary 2.12. Let N be a proper submodule of a multiplication R-module M. If \sqrt{N} is finitely generated, then N is a weak primary submodule if and only if N is a primary submodule.
3 Intersection Theorem in multiplication modules

Recall that in a multiplication module every primary submodule is weak primary. Then we can use properties of weak primary submodules for primary submodules. For example the next theorem extend a well-known theorem in commutative rings to multiplication modules.

Theorem 3.1. Let M be a multiplication Noetherian R-module and N be a submodule of M. If $L = \bigcap_{k=1}^{\infty} N^k$, then $LN = L$.

Proof. If $N = M$, then the claim is clear, and so we assume that $N \neq M$. Since $LN \subseteq L \subseteq N$, then LN is also a proper submodule. But M is Noetherian, hence by [6; Exercise 9.31], N has a primary decomposition. Let $LN = Q_1 \cap Q_2 \cap ... \cap Q_l$ be a minimal primary decomposition of LN. It is sufficient to prove that $L \subseteq Q_i$, for all i (1 \leq i \leq l). Suppose that, in contrary, we have $L \nsubseteq Q_j$, for some j, with 1 \leq j \leq l, so that there exists an element $m \in L$ such that $m \notin Q_j$. Since $mN \subseteq LN \subseteq Q_j$ and Q_j is weak primary submodule, by Theorem 2.6, then $N \subseteq \sqrt{Q_j}$, by Corollary 2.5.

On the other hand, Since M is Noetherian, then $\sqrt{Q_j}$ is finitely generated and so $(\sqrt{Q_j})^k \subseteq Q_j$, for some positive integer k, by Proposition 2.8. Hence $L \subseteq N^k \subseteq (\sqrt{Q_j})^k \subseteq Q_j$. This is a contradiction. Therefore $L \subseteq Q_i$, for all i, and so $LN = L$. \square

Let M be a Noetherian R-module. We will denote the intersection of all maximal submodule of M by $\text{Rad}_R(M)$. By the above Theorem, we can easily be extended Krull’s Intersection Theorem to multiplication modules.

Theorem 3.2 Let M be a multiplication Noetherian R-module and N be a submodule of M. If $N \subseteq \text{Rad}_R(M)$, then $\bigcap_{k=1}^{\infty} N^k = 0$.

Proof. Set $L = \cap_{k=1}^{\infty} N^k$. By Theorem 3.1, $LN = L$. Moreover there are ideals I and J of R such that $N = IM$ and $L = JM$. Since $L = LN$, then $L = (JM)(IM) = IJM = IL$. It is clear that M is a faithful Noetherian \overline{R}-module, where $\overline{R} = \frac{R}{\text{Ann}(M)}$. If $f : R \rightarrow \overline{R}$ is canonical homomorphism and \overline{I} is the image of I, then $\overline{IL} = L$. Since M is faithful, then $\text{Rad}_\overline{R}(M) = \text{Jac}(\overline{R})M$, by [3; Theorem 2.7]. But $IM = N \subseteq \text{Rad}_R(M)$, then $\overline{IM} \subseteq \text{Jac}(\overline{R})M$ and so $\overline{I} \subseteq \text{Jac}(\overline{R})$, by [3; Theorem 3.1]. Finally, from $\overline{IL} = L$, we conclude that $L = 0$, by Nakayama Lemma. \square

Corollary 3.3. Let M be a multiplication Noetherian R-module and N be
the only maximal submodule of M. then $\cap_{k=1}^{\infty} N_k = 0$.

References

Received: May, 2009