On the L-Order and L-Type of Wronskians

Sanjib Kumar Datta

Department of Mathematics, University of North Bengal
Darjeeling, Pin-734013, West Bengal, India
sanjib.kr_datta@yahoo.co.in

Sanjib Mondal

Chaltia Sreeguru Pathshala High School
P.O.-Berhampore, Dist.-Murshidabad, PIN-742101
West Bengal, India
sanjib.mondal.math@yahoo.in

Abstract

In the paper we study the relationship between the L-order (L-type) of a transcendental meromorphic function and that of a wronskian generated by it.

Mathematics Subject Classification: 30D35

Keywords: Wronskian, Transcendental meromorphic function, Slowly changing function, L-order, L-hyper order, L-type

1 Introduction, Definitions and Notations.

We denote by C the set of all finite complex numbers. Let f be a meromorphic function defined on C. We use the standard notations and definitions in the theory of entire and meromorphic functions which are available in [4] and [1]. In the sequel we use the following notation:

$log^k x = log(log^{k-1} x)$ for $k = 1, 2, 3, \ldots$ and $log^0 x = x$.

The following definitions are well known:

Definition 1. The order ρ_f and lower order λ_f of a meromorphic function f is defined as

$$\rho_f = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r} \quad \text{and} \quad \lambda_f = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}.$$
If \(f \) is entire then
\[
\rho_f = \limsup_{r \to \infty} \frac{\log^2 M(r, f)}{\log r} \quad \text{and} \quad \lambda_f = \liminf_{r \to \infty} \frac{\log^2 M(r, f)}{\log r}.
\]

Definition 2. The hyper order \(\rho_f \) and hyper lower order \(\lambda_f \) of a meromorphic function \(f \) is defined as
\[
\tilde{\rho}_f = \limsup_{r \to \infty} \frac{\log^2 T(r, f)}{\log r} \quad \text{and} \quad \tilde{\lambda}_f = \liminf_{r \to \infty} \frac{\log^2 T(r, f)}{\log r}.
\]

If \(f \) is entire then one can easily verify that
\[
\tilde{\rho}_f = \limsup_{r \to \infty} \frac{\log^3 M(r, f)}{\log r} \quad \text{and} \quad \tilde{\lambda}_f = \liminf_{r \to \infty} \frac{\log^3 M(r, f)}{\log r}.
\]

Definition 3. The type \(\sigma_f \) of a meromorphic function \(f \) is defined as
\[
\sigma_f = \limsup_{r \to \infty} \frac{T(r, f)}{r^{\rho_f}}, \quad 0 < \rho_f < \infty.
\]
When \(f \) is entire, then
\[
\sigma_f = \limsup_{r \to \infty} \frac{\log M(r, f)}{r^{\rho_f}}, \quad 0 < \rho_f < \infty.
\]

Definition 4. A meromorphic function \(a = a(z) \) is called small with respect to \(f \) if \(T(r, a) = S(r, f) \).

Definition 5. Let \(a_1, a_2, \ldots, a_k \) be linearly independent meromorphic functions and small with respect to \(f \). We denote by \(L(f) = W(a_1, a_2, \ldots, a_k, f) \) the Wronskian determinant of \(a_1, a_2, \ldots, a_k, f \). i.e.
\[
L(f) = \begin{vmatrix}
 a_1 & a_2 & \ldots & a_k & f \\
 a_1' & a_2' & \ldots & a_k' & f' \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_1^{(k)} & a_2^{(k)} & \ldots & a_k^{(k)} & f^{(k)}
\end{vmatrix}
\]

Definition 6. If \(a \in \mathbb{C} \cup \{\infty\} \), the quantity
\[
\delta(a; f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f)}{T(r, f)} = \liminf_{r \to \infty} \frac{m(r, a; f)}{T(r, f)}
\]
is called the Nevanlinna deficiency of the value \(a \).
From the second fundamental theorem it follows that the set of values of \(a \in \mathbb{C} \cup \{\infty\} \) for which \(\delta(a; f) > 0 \) is countable and
\[
\sum_{a \neq \infty} \delta(a, f) + \delta(\infty, f) \leq 2.
\]
(cf.\([1, p.43]\)). If in particular,
\[
\sum_{a \neq \infty} \delta(a, f) + \delta(\infty, f) = 2,
\]
we say that \(f \) has the maximum deficiency sum.

Somasundaram and Thamizharasi \([3]\) introduced the notion of \(L - \text{order} \) and \(L - \text{type} \) for entire functions where \(L = L(r) \) is a positive continuous function increasing slowly in the sense of 'Karamata' i.e. \(L(ar) \sim L(r) \) as \(r \to \infty \) for every positive constant 'a'. Their definitions are as follows:

Definition 7. \([3]\) The \(L - \text{order} \) \(\rho^L_f \) and \(L - \text{lower order} \) \(\lambda^L_f \) of an entire function \(f \) are defined as follows:
\[
\rho^L_f = \limsup_{r \to \infty} \frac{\log[2] M(r, f)}{\log [rL(r)]} \quad \text{and} \quad \lambda^L_f = \liminf_{r \to \infty} \frac{\log[2] M(r, f)}{\log [rL(r)]}.
\]
When \(f \) is meromorphic, then
\[
\rho^L_f = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log [rL(r)]} \quad \text{and} \quad \lambda^L_f = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log [rL(r)]}.
\]

Definition 8. \([3]\) The \(L - \text{type} \) \(\sigma^L_f \) of an entire function \(f \) with \(L\)-order \(\rho^L_f \) is defined as
\[
\sigma^L_f = \limsup_{r \to \infty} \frac{\log M(r, f)}{[rL(r)]^{\rho^L_f}}, \quad 0 < \rho^L_f < \infty.
\]
For meromorphic \(f \), the \(L - \text{type} \) \(\sigma^L_f \) becomes
\[
\sigma^L_f = \limsup_{r \to \infty} \frac{T(r, f)}{[rL(r)]^{\rho^L_f}}, \quad 0 < \rho^L_f < \infty.
\]
Similarly one can define the \(L - \text{hyper order} \) and \(L - \text{hyper lower order} \) of entire and meromorphic \(f \).

The more generalised concept of \(L - \text{order} \) and \(L - \text{type} \) of entire and meromorphic functions are \(L^* - \text{order} \) and \(L^* - \text{type} \) respectively. Their definitions are as follows:
Definition 9. The L^*—order, L^*—lower order and L^*—type of a meromorphic function f are defined by

$$
\rho_f^{L^*} = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log [re^{L(r)}]}, \quad \lambda_f^{L^*} = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log [re^{L(r)}]}
$$

and

$$
\sigma_f^{L^*} = \limsup_{r \to \infty} \frac{T(r, f)}{[re^{L(r)}]^\rho_f^{L^*}}, \quad 0 < \rho_f^{L^*} < \infty.
$$

When f is entire, one can easily verify that

$$
\rho_f^{L^*} = \limsup_{r \to \infty} \frac{\log [2] M(r, f)}{\log [re^{L(r)}]}, \quad \lambda_f^{L^*} = \liminf_{r \to \infty} \frac{\log [2] M(r, f)}{\log [re^{L(r)}]}
$$

and

$$
\sigma_f^{L^*} = \limsup_{r \to \infty} \frac{\log M(r, f)}{[re^{L(r)}]^\rho_f^{L^*}}, \quad 0 < \rho_f^{L^*} < \infty,
$$

where $\log^{[k]} x = \log(\log^{[k-1]} x)$ for $k = 1, 2, 3, \ldots$ and $\log^{[0]} x = x$.

Since the natural extension of a derivative is a differential polynomial, in this paper we prove our results for a special type of linear differential polynomials viz. the Wronskians. In the paper we establish the relationship between the L—order(L—type) of a transcendental meromorphic function f and that of a wronskian generated by it.

2 Lemma.

In this section we present a lemma which will be needed in the sequel.

Lemma 1. [2] Let f be a transcendental meromorphic function having the maximum deficiency sum. Then

$$
\lim_{r \to \infty} \frac{T(r, L(f))}{T(r, f)} = 1 + k - k\delta(\infty; f).
$$

3 Theorems.

In this section we present the main results of the paper.

Theorem 1. Let f be a transcendental meromorphic function having the maximum deficiency sum. Then the L—order of $L(f)$ are same as that of f. Also the L—type of $L(f)$ is $\{1 + k - k\delta(\infty; f)\}$ times that of f if f is of finite positive order.
Proof. By Lemma 1, \(\lim_{r \to \infty} \frac{\log T(r, L(f))}{\log T(r, f)} \) exists and is equal to 1. So

\[
\rho_{L(f)}^L = \limsup_{r \to \infty} \frac{\log T(r, L(f))}{\log [rL(r)]} = \limsup_{r \to \infty} \left\{ \frac{\log T(r, f) \log T(r, L(f))}{\log [rL(r)]} \right\} = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log [rL(r)]} \lim_{r \to \infty} \frac{\log T(r, f)}{\log T(r, L(f))} = \rho_f^L. 1 = \rho_f^L.
\]

Again

\[
\sigma_{L(f)}^L = \limsup_{r \to \infty} \frac{T(r, L(f))}{[rL(r)]^{\rho_{L(f)}^L}} = \limsup_{r \to \infty} \frac{T(r, f)}{[rL(r)]^{\rho_f^L}} \lim_{r \to \infty} \frac{T(r, L(f))}{T(r, f)} = \sigma_f^L. \{1 + k - k\delta(\infty; f)\}.
\]

This proves the theorem.

Theorem 2. Let \(f \) be a transcendental meromorphic function having the maximum deficiency sum. Then the \(L \)-lower order of \(L(f) \) and that of \(f \) are equal.

We omit the proof of Theorem 2 because it can be carried out in the line of Theorem 1.

Theorem 3. If \(f \) be a transcendental meromorphic function having the maximum deficiency sum then the \(L \)-hyper order of \(L(f) \) are same as that of \(f \).

Proof. Let \(\rho_{L(f)}^L \) and \(\rho_f^L \) be the \(L \)-hyper orders of \(L(f) \) and \(f \) respectively. By Lemma 1,

\[
\lim_{r \to \infty} \frac{\log^2 T(r, L(f))}{\log^2 T(r, f)}
\]

exists and is equal to 1. Thus we get

\[-L_{\rho_{L(f)}} = \limsup_{r \to \infty} \frac{\log^{[2]} T(r, L(f))}{\log [rL(r)]} = \limsup_{r \to \infty} \left\{ \frac{\log^{[2]} T(r, f)}{\log [rL(r)]}, \frac{\log^{[2]} T(r, L(f))}{\log [rL(r)]} \right\} = \limsup_{r \to \infty} \frac{\log^{[2]} T(r, f)}{\log [rL(r)]}, \lim_{r \to \infty} \frac{\log^{[2]} T(r, L(f))}{\log [rL(r)]} \]

\[-L_{\rho_{f.1}} = -L_{\rho_{f}}.

Thus the theorem is established.

In the line of Theorem 3 we may state the following theorem without proof.

Theorem 4. Let \(f \) be a transcendental meromorphic function having the maximum deficiency sum. Then the \(L - \) hyper lower orders of \(L(f) \) and \(f \) are same.

In the following theorem we establish the relationship between the \(L^* - \) order \((L^* - \text{type})\) of \(L(f) \) and \(f \).

Theorem 5. Let \(f \) be a transcendental meromorphic function having the maximum deficiency sum. Then the \(L^* - \) order of \(L(f) \) is same as that of \(f \). Also the \(L^* - \) type of \(L(f) \) is \(\{1 + k - k\delta(\infty; f)\} \) times that of \(f \) when \(f \) is of finite positive order.

Proof. By Lemma 1, \(\lim_{r \to \infty} \frac{\log T(r, L(f))}{\log T(r, f)} \) exists and is equal to 1. So

\[\rho^{L^*}_{L(f)} = \limsup_{r \to \infty} \frac{\log T(r, L(f))}{\log [r^{L^*(r)}]} = \limsup_{r \to \infty} \left\{ \frac{\log T(r, L(f))}{\log T(r, f)}, \frac{\log T(r, f)}{\log [r^{L^*(r)}]} \right\} = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log [r^{L^*(r)}]}, \lim_{r \to \infty} \frac{\log T(r, L(f))}{\log T(r, f)} \]

\[= \rho^{L^*}_{f.1} = \rho^{L^*}_{f}.

Again

\[\sigma_{L(f)}^* = \limsup_{r \to \infty} \frac{T(r, L(f))}{[r e^{L(r)}]^\rho_{L(f)}} \]

\[= \limsup_{r \to \infty} \left\{ \frac{T(r, f)}{[r e^{L(r)}]^\rho_{L(f)}} \cdot \frac{T(r, L(f))}{T(r, f)} \right\} \]

\[= \limsup_{r \to \infty} \frac{T(r, f)}{[r e^{L(r)}]^\rho_{L(f)}} \cdot \lim_{r \to \infty} \frac{T(r, L(f))}{T(r, f)} \]

\[= \sigma_f^* \cdot \{1 + k - k \delta(\infty; f)\}. \]

This proves the theorem.

Theorem 6. If \(f \) be a transcendental meromorphic function having the maximum deficiency sum then the \(L^* \) – lower order of \(L(f) \) and that of \(f \) are equal.

We omit the proof of Theorem 6 because it can be carried out in the line of Theorem 5.

References

Received: April, 2009