Some Equivalent Conditions on s-Normal Matrices

S. Krishnamoorthy

Department of Mathematics
Government Arts College (Autonomous)
Kumbakonam, Tamil Nadu, India

R.Vijayakumar

Department of Mathematics, Srinivasa Ramanujan Centre
SASTRA University, Kumbakonam, Tamil Nadu, India
viji_rd07@yahoo.com

Abstract

Concept of s-unitarily equivalent matrices is introduced. Some equivalent conditions on s-normal matrices are given.

Mathematics Subject Classifications: 15A09, 15A57

Keywords: Conjugate secondary transpose, secondary normal, secondary hermitian, eigenvalue, eigenvector

1. Introduction:

The concept of s-normal matrices was introduced in [1]. Equivalent conditions on normal matrices were given in [2]. In this paper, our intention is to define s-unitarily equivalent matrices and prove some equivalent conditions on s-normal matrices. Also we prove some results on s-normal matrices. Let $\mathcal{E}_{n \times n}$ be the space of $n \times n$ complex matrices. If $A = (a_{ij}) \in \mathcal{E}_{n \times n}$, then the secondary transpose of A, denoted by A^s, is defined as $A^s = (b_{ij})$, where $b_{ij} = a_{n-j+1,n-i+1}$. A^s denotes the conjugate secondary transpose of A, i.e. $A^s = \overline{A^s} = (c_{ij})$, where $c_{ij} = \overline{a_{n-j+1,n-i+1}}$. As A^T satisfies the elementary properties, A^s also satisfies the
properties such as \((A^\theta)^\theta = A\), \((A + B)^\theta = A^\theta + B^\theta\), \((AB)^\theta = B^\theta A^\theta\) etc., where \(A, B \in \mathbb{C}^{n \times n}\). A matrix \(A \in \mathbb{C}^{n \times n}\) is said to be s-hermitian matrix if \(A^\theta = A\).

2. Definitions:

In this section, we define s-normal, s-unitary and s-unitarily equivalent matrices.

Definition 2.1:

A matrix \(A \in \mathbb{C}^{n \times n}\) is said to be secondary normal (s-normal) if \(AA^\theta = A^\theta A\).

Example 2.2:

\[
A = \begin{pmatrix}
6 + 2i & 3 \\
2 & 6 + 4i
\end{pmatrix}
\]

is an s-normal matrix.

Definition 2.3:

A matrix \(A \in \mathbb{C}^{n \times n}\) is said to be secondary unitary (s-unitary) if \(AA^\theta = A^\theta A = I\).

Example 2.4:

\[
A = \begin{pmatrix}
i & 1 \\
\frac{\sqrt{2}}{i} & \frac{\sqrt{2}}{i}
\end{pmatrix}
\]

is an s-unitary matrix.

Definition 2.5:

Let \(A, B \in \mathbb{C}^{n \times n}\). The matrix \(B\) is said to be secondary unitarily equivalent (s-unitarily equivalent) to \(A\) if there exists an s-unitary matrix \(U\) such that \(B = U^\theta AU\).

Example 2.6:

Let \(A = \begin{pmatrix} 1 + i & 2i \\ 3 + 2i & 3 \end{pmatrix}\) and \(B = \begin{pmatrix} 2 + 2i & 2 + 3i \\ -2 + 2i & -3 + 2i \end{pmatrix}\).
Then if we take \(U = \begin{pmatrix} \frac{i}{\sqrt{2}} & 1 \\ 1 & \frac{i}{\sqrt{2}} \end{pmatrix} \), it can be verified that \(UU^0 = U^0U = I \) and \(B = U^0AU \). Hence \(B \) is s-unitarily equivalent to \(A \).

3. Equivalent conditions on s-normal matrices:

Theorem 3.1:

Let \(A \in \mathcal{C}_{n \times n} \). If \(A \) is s-unitarily equivalent to a diagonal matrix, then \(A \) is s-normal.

Proof:

Let \(A \in \mathcal{C}_{n \times n} \). If \(A \) is s-unitarily equivalent to a diagonal matrix \(D \), then there exists an s-unitary matrix \(P \) such that \(P^0AP = D \) which implies that \(A = PD^0P \), as \(P^0P = I \). Now \(AA^0 = PD^0P^0D^0P = PDD^0P^0 \). Also \(A^0A = PD^0P^0D^0P = PD^0D^0 \). Since \(D \) and \(D^0 \) are each diagonal, \(DD^0 = D^0D \) and hence \(AA^0 = A^0A \) so that \(A \) is s-normal.

Remark 3.2: It can be shown that \(A \) is s-normal \(\iff A^{-1}A^0 \) is s-unitary.

Theorem 3.3:

Let \(H, N \in \mathcal{C}_{n \times n} \) be invertible. If \(B = HNH \), where \(H \) is s-hermitian and \(N \) is s-normal, then \(B^{-1}B^0 \) is similar to an s-unitary matrix.

Proof:

Let \(H, N \in \mathcal{C}_{n \times n} \) be invertible. If \(B = HNH \), then \(B^{-1}B^0 = H^{-1}N^{-1}H^0N^0H^0 = H^{-1}N^{-1}H^{-1}HN^0H \) as \(H^0 = H \) and hence \(B^{-1}B^0 = H^{-1}N^{-1}N^0H \). Since \(N \) is s-normal, from remark 3.2, \(N^{-1}N^0 \) is s-unitary and hence the result follows.
Theorem 3.4: If A is s-normal and $AB = 0$, then $A^\theta B = 0$.

Proof: See [1].

Theorem 3.5: If X is an eigenvector of an s-normal matrix A corresponding to an eigenvalue λ, then X is also an eigenvector of A^θ corresponding to the eigenvalue $\overline{\lambda}$.

Proof: Let $A \in \mathcal{E}_{n \times n}$ be s-normal. Since X is an eigenvector of A corresponding to an eigenvalue λ, $AX = \lambda X$. Since A is s-normal, it can be easily seen that $A-\lambda I$ and $(A-\lambda I)^\theta$ commute and hence $A-\lambda I$ is s-normal. Now $AX = \lambda X \Rightarrow (A-\lambda I)X = 0$. Since $A-\lambda I$ is s-normal, by theorem 3.4, $(A-\lambda I)^\theta X = 0$ which implies $(A^\theta - \overline{\lambda}I)X = 0$ and hence $A^\theta X = \overline{\lambda}X$ which leads to the result.

Theorem 3.6: If $A \in \mathcal{E}_{n \times n}$ is s-unitary and if λ is an eigenvalue of A, then $|\lambda| = 1$.

Proof: Since $A \in \mathcal{E}_{n \times n}$ is s-unitary, A is s-normal. Since λ is an eigenvalue of A, there exists an eigenvector $V \neq 0$ such that $AV = \lambda V$ which implies $A^\theta V = \overline{\lambda}V$ as A is s-normal. Now $V = IV = A^\theta AV$ which leads to $V(1 - \lambda\overline{\lambda}) = 0$. Since $V \neq 0$, $1 - \lambda\overline{\lambda} = 0$ which implies that $|\lambda| = 1$.

Theorem 3.7: Let $A \in \mathcal{E}_{n \times n}$. Assume that $A=VP$, where V is s-unitary and P is non singular and s-hermitian such that if P^2 commutes with V, then P also commutes with V. Then the following conditions are equivalent.
Some equivalent conditions on s-normal matrices

(i) A is normal.
(ii) VP=PV
(iii) AV=VA
(iv) AP=PA

Proof:

Let A=VP. Since V is s-unitary $VV^0 = V^0V = I$ and since P is s-hermitian, $P^0 = P$.

(i) \iff (ii): If A is s-normal, then $AA^0 = A^0A$. Since A=VP,

$$(VP)(VP)^0 = (VP)^0(VP)$$

which implies that $VP^2V^0 = P$. Post multiply by V,

we have $VP^2 = P^2V$ and hence $VP = PV$ by our assumption.

Conversely, if $VP = PV$, then $P^0V^0 = V^0P^0$.

Now $AA^0 = VPP^0V^0 = VPV^0P^0 = VP^0V^0P$ as $P^0 = P$. Therefore

$AA^0 = VV^0P^0P = V^0VPP = V^0PV = (PV)^0(VP) = (VP)^0(VP) = A^0A$

and hence A is s-normal.

(i) \iff (iii): If A is s-normal, then by (ii), $VP = PV$.

Now $AV = (VP)V = V(VP) = VA$. Conversely, if $AV = VA$, then $(VP)V = V(VP)$,

pre multiply by V^0, $V^0V(VP) = V^0V(VP)$ which implies $PV = VP$ and hence

A is s-normal.

(i) \iff (iv): If A is s-normal, then $AP = (VP)P = PVP = PA$.

Conversely, if $AP = PA$, then $(VP)P = P(VP)$. Post multiply by P^{-1}, we have $VP = PV$ and so

A is s-normal.

Theorem 3.8:

Let $A \in \mathcal{C}_{n \times n}$. Assume that A=VP, where V is s-unitary and P is non singular and s-hermitian such that if P^2 commutes with V, then P also commutes with V. Then the following conditions are equivalent.

(i) A is s-normal.
(ii) Any eigenvector of V is an eigenvector of P (as long as V has distinct eigen values)
(iii) Any eigenvector of P is an eigenvector of V (as long as P has distinct eigen values)
(iv) Any eigenvector of V is an eigenvector of A (as long as V has distinct eigen values)
(v) Any eigenvector of A is an eigenvector of V (as long as A has distinct eigen values)
(vi) Any eigenvector of \(P \) is an eigenvector of \(A \) (as long as \(P \) has distinct eigenvalues)

(vii) Any eigenvector of \(A \) is an eigenvector of \(P \) (as long as \(A \) has distinct eigenvalues)

Proof:

(i) \(\iff \) (ii):

Let \(V \) have distinct eigenvalues. If we prove \(VP = PV \iff \) any eigenvector of \(V \) is an eigenvector of \(P \), then (i) \(\iff \) (ii) follows by theorem 3.7. Assume that any eigenvector of \(V \) is an eigenvector of \(P \). If \(X \) is an eigenvector of \(V \), then \(X \) is also an eigenvector of \(P \). \(\therefore \) There exist eigenvalues \(\lambda \) and \(\mu \) such that \(VX = \lambda X \) and \(PX = \mu X \). Now \(VX = \lambda X \) implies \(PVX = P\lambda X = \lambda \mu X \). Similarly \(PX = \mu X \) implies \(VPX = \mu \mu X \). Therefore \(PVX = VPX \rightarrow (PV - VP)X = 0 \) which implies \(PV = VP \) as \(X \neq 0 \).

Conversely, assume that \(VP = PV \). If \(X \) is an eigenvector of \(V \), then there exists an eigenvalue \(\lambda \) such that \(VX = \lambda X \). Let \(\mu \) be an eigenvalue of \(V \) such that \(VX = \mu X \). \(\therefore \lambda \neq \mu \). Now \(VP = PV \) implies \((PV - VP)X = 0 \) which shows that \(VPX = \lambda PX \). Similarly \(VX = \mu X \) implies \(VPX = \mu PX \). \(\therefore \lambda PX = \mu PX \rightarrow (\lambda - \mu)PX = 0 \Rightarrow PX = 0 \) as \(\lambda - \mu \neq 0 \). \(\therefore PX = 0X \) and hence \(X \) is an eigenvector of \(P \) corresponding to the eigenvalue 0. In general, if \(\mu \) is any eigenvalue of \(V \), then we can prove that \(X \) is also an eigenvector of \(P \). Therefore any eigenvector of \(V \) is also an eigenvector of \(P \).

Similar proof holds for other equivalent conditions.

References

Received: March, 2009