A Note on Characterization of Prime Ideals of Γ-Semigroups in terms of Fuzzy Subsets

Sujit Kumar Sardar
Department of Mathematics, Jadavpur University
Kolkata-700032, India
sksardarjumath@gmail.com

Samit Kumar Majumder
Department of Mathematics, Jadavpur University
Kolkata-700032, India
samitmathalg@yahoo.co.in

Debabrata Mandal 1
Department of Mathematics, Jadavpur University
Kolkata-700032, India
debabrata.687@rediffmail.com

Abstract

In this paper the notion of fuzzy prime ideal in Γ-semigroups has been introduced and studied. Relationship between prime ideals of a Γ-semigroup and that of its operator semigroups have been obtained which are used to revisit analogous results on ideals of Γ-semigroups and its operator semigroups.

Mathematics Subject Classification [2000]: 20M12, 03F55, 08A72

Keywords: Γ-Semigroup, Fuzzy prime ideal, Left (resp. right) operator semigroup

1The research is funded by CSIR, INDIA
1 Introduction

Γ-semigroup was introduced by Sen and Saha[8] as a generalization of semigroup and ternary semigroup. Many results of semigroups have been extended to Γ-semigroups directly and via operator semigroups[1, 2, 3] of a Γ-semigroup. Fuzzy semigroups have been introduced by Kuroki[4] as a generalization of classical semigroups, using the concept of fuzzy set introduced by Zadeh[9]. Since then many authors have studied semigroups in terms of fuzzy sets. Motivated by Kuroki[4], Mustafa et al[5] we have initiated the study of Γ-semigroups in terms of fuzzy sets[7]. This paper is a continuation of our study of Γ-semigroups in terms of fuzzy sets. We introduce here the notion of fuzzy prime ideals in Γ-semigroups. They are found to satisfy characteristic function criterion and level subset criterion. As we did for fuzzy ideals of a Γ-semigroup in [7], in order to make operator semigroups to work, we establish here various relationships between fuzzy prime ideals of a Γ-semigroup and that of its operator semigroups. Among other results we obtain an inclusion preserving bijection between the set of all prime ideals of a Γ-semigroup (not necessarily with unities) and that of its operator semigroups. As an immediate application of this we obtain a new proof of an important result of Γ-semigroup.

2 Preliminaries

We recall the following definitions and results which will be used in the sequel.

Definition 2.1 [9] A fuzzy subset of a non-empty set X is a function $\mu : X \rightarrow [0, 1]$.

Definition 2.2 [3] Let S and Γ be two non-empty sets. S is called a Γ-semigroup if there exist mappings from $S \times \Gamma \times S$ to S, written as $(a, \alpha, b) \mapsto a\alpha b$, and from $\Gamma \times S \times \Gamma$ to Γ, written as $(\alpha, a, \beta) \mapsto \alpha a\beta$ satisfying the following associative laws $(a\alpha b)\beta c = a(\alpha b)c = a\alpha (b\beta c)$ and $\alpha (a\beta b)\gamma = (\alpha a\beta)b\gamma = \alpha a(b\beta\gamma)$ for all $a, b, c \in S$ and for all $\alpha, \beta, \gamma \in \Gamma$.

Definition 2.3 [7] A non-empty fuzzy subset μ of a Γ-semigroup S is called a fuzzy left ideal (right ideal) of S if $\mu(x\gamma y) \geq \mu(y)$ (resp. $\mu(x\gamma y) \geq \mu(x)$) $\forall x, y \in S, \forall \gamma \in \Gamma$.

Definition 2.4 [7] A non-empty fuzzy subset μ of a Γ-semigroup S is called a fuzzy ideal of S if it is both fuzzy left ideal and fuzzy right ideal of S.

Definition 2.5 [7] Let μ be a fuzzy subset of a set S. Then for $t \in [0, 1]$ the set $\mu_t = \{x \in S : \mu(x) \geq t\}$ is called t-level subset or simply level subset of μ.
Proposition 2.6 [7] Let I be a non-empty subset of a Γ-semigroup S and μ_I be the characteristic function of I, then I is a left ideal (resp. right ideal, ideal) of S if and only if μ_I is a fuzzy left ideal (resp. fuzzy right ideal, fuzzy ideal) of S.

Proposition 2.7 [7] A non-empty fuzzy subset μ in a Γ-semigroup S is a fuzzy ideal iff for any $t \in [0,1]$, the t-level subset of μ (if non-empty), is an ideal of S.

Definition 2.8 [2] Let S be a Γ-semigroup. An ideal P of S is said to be prime if, for any two ideals A and B of S, $A \Gamma B \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$.

Theorem 2.9 Let I be an ideal of a Γ-semigroup S. Then the following are equivalent.

(i) I is prime.
(ii) For $x, y \in S$, $x \Gamma S \Gamma y \subseteq I \Rightarrow x \in I$ or $y \in I$.
(iii) For $x, y \in S$, $x \Gamma y \subseteq I \Rightarrow x \in I$ or $y \in I$.

Proof. By Theorem 3.4[2] (i) \Rightarrow (ii).

(ii) \Rightarrow (iii)
Let us suppose that (ii) holds and $x \Gamma y \subseteq I$. Then $x \Gamma s \Gamma y \subseteq I$ as $x \Gamma s \Gamma y \subseteq x \Gamma y$
Hence by (ii), $x \in I$ or $y \in I$.

(iii) \Rightarrow (i)
Let us suppose that (iii) holds. Let for two ideals A, B of S, $A \Gamma B \subseteq I$. If possible, suppose $A \not\subseteq I$ or $B \not\subseteq I$. Then $x \in A$ and $y \in B$ such that $x \not\in I$ and $y \not\in I$. This implies that $x \Gamma y \subseteq I$ with $x \not\in I$, $y \not\in I$. This is a contradiction to (iii). Hence either $A \subseteq I$ or $B \subseteq I$. Consequently I is a prime ideal of S. ■

3 Fuzzy Prime Ideal

Definition 3.1 A fuzzy ideal μ of a Γ-semigroup S is called fuzzy prime ideal if $\inf_{\gamma \in \Gamma} \mu(x \gamma y) = \max\{\mu(x), \mu(y)\}$ $\forall x, y \in S$.

Example: Let S be the set of all 1×2 matrices over GF_2 (the finite field with two elements) and Γ be the set of all 2×1 matrices over GF_2. Then S is a Γ-semigroup where $a \alpha b$ and $a \alpha \beta (a, b \in S$ and $\alpha, \beta \in \Gamma)$ denote the usual matrix product. Let $\mu : S \rightarrow [0,1]$ be defined by

$\mu(x) = \begin{cases} 0.3 & \text{if } a=(0,0) \\ 0.2 & \text{otherwise} \end{cases}$

Then μ is a fuzzy prime ideal of S.

Theorem 3.2 Let S be a Γ-semigroup and $\emptyset \neq I \subseteq S$. Then the following are equivalent.

(i) I is a prime ideal of S.

(ii) The characteristic function μ_I of I is a fuzzy prime ideal of S.

Proof. (i) \Rightarrow (ii)

Let I be a prime ideal of S and μ_I be the characteristic function of I. Since $I \neq \emptyset$, μ_I is non-empty. Let $x, y \in S$. Suppose $x\Gamma y \subseteq I$. Then $\mu_I(x\gamma y) = 1$ for $\gamma \in \Gamma$. Hence $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = 1$. Now I being prime, $x \in I$ or $y \in I$ (cf. Theorem 2.9). Hence $\mu_I(x) = 1$ or $\mu_I(y) = 1$ which gives $\max\{\mu_I(x), \mu_I(y)\} = 1$. Thus we see that $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = \max\{\mu_I(x), \mu_I(y)\}$. Now suppose that $x\Gamma y \not\subseteq I$.

Then for $\gamma \in \Gamma$, $x\gamma y \not\subseteq I$ which means that $\mu_I(x\gamma y) = 0$. Consequently, $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = 0$. Now since I is a prime ideal of S, $x \not\in I$ and $y \not\in I$. Hence $\mu_I(x) = 0$ and $\mu_I(y) = 0$. Consequently, $\max\{\mu_I(x), \mu_I(y)\} = 0$. Thus we see that in this case also $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = \max\{\mu_I(x), \mu_I(y)\}$.

(ii) \Rightarrow (i)

Let μ_I be a fuzzy prime ideal of S. Then μ_I is a fuzzy ideal of S. So by Proposition 2.6, I is an ideal of S. Let $x, y \in S$ such that $x\Gamma y \subseteq I$. Then $\mu_I(x\gamma y) = 1$. Hence $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = 1$. Let $x \not\in I$ and $y \not\in I$. Then $\mu_I(x) = 0 = \mu_I(y)$, which means $\max\{\mu_I(x), \mu_I(y)\} = 0$. This implies that $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = 0$.

Thus we get a contradiction. Hence $x \in I$ or $y \in I$. Thus we see that I is a prime ideal of S(cf. Theorem 2.9). □

Theorem 3.3 Let S be a Γ-semigroup and μ be a non-empty fuzzy subset of S. Then the following are equivalent.

(i) μ is fuzzy prime ideal of S

(ii) For any $t \in [0, 1]$ the t-level subset of μ(if it is non-empty) is a prime ideal of S.

Proof. (i) \Rightarrow (ii)

Let μ be a fuzzy prime ideal of S. Let $t \in [0, 1]$ such that μ_t is non-empty. Let for $x, y \in S$, $x\Gamma y \subseteq \mu_t$. Then $\mu(x\gamma y) \geq t \ \forall \gamma \in \Gamma$. So $\inf_{\gamma \in \Gamma} \mu(x\gamma y) \geq t$. Since μ is a fuzzy prime ideal, it follows that $\max\{\mu(x), \mu(y)\} \geq t$. So $\mu(x) \geq t$ or $\mu(y) \geq t$. Hence $x \in \mu_t$ or $y \in \mu_t$. So μ_t is a prime ideal of S(cf. Theorem 2.9).

(ii) \Rightarrow (i)

Let every non-empty level subset μ_t of μ be a prime ideal of S. Let $x, y \in S$. Let $\inf_{\gamma \in \Gamma} \mu(x\gamma y) = t$ (we note here that since $\mu(x\gamma y) \in [0, 1] \ \forall \gamma \in \Gamma$, $\inf_{\gamma \in \Gamma} \mu(x\gamma y)$ exists). Then $\mu(x\gamma y) \geq t \ \forall \gamma \in \Gamma$. So $x\gamma y \in \mu_t \ \forall \gamma \in \Gamma$. So μ_t is non-empty and $x\Gamma y \subseteq \mu_t$. Since μ_t is a prime ideal of S, $x \in \mu_t$ or $y \in \mu_t$(cf. Theorem 2.9). So $\mu(x) \geq t$ or $\mu(y) \geq t$. So $\max\{\mu(x), \mu(y)\} \geq t$, i.e., $\max\{\mu(x), \mu(y)\} \geq t$. □
inf \(\mu(x\gamma y) \)(1). Again by Proposition 2.7, \(\mu \) is a fuzzy ideal of \(S \). So \(\forall \gamma \in \Gamma \), \(\mu(x\gamma y) \geq \mu(x) \) and \(\mu(x\gamma y) \geq \mu(y) \). So \(\mu(x\gamma y) \geq \max\{\mu(x), \mu(y)\} \) \(\forall \gamma \in \Gamma \). Hence \(\inf_{\gamma \in \Gamma} \mu(x\gamma y) \geq \max\{\mu(x), \mu(y)\} \)(2). Combining (1) and (2), thus \(\inf_{\gamma \in \Gamma} \mu(x\gamma y) = \max\{\mu(x), \mu(y)\} \). Hence \(\mu \) is a fuzzy prime ideal of \(S \). \(\blacksquare \)

4 Corresponding Fuzzy Prime Ideals

Unless otherwise stated, throughout this section \(S \) denotes a \(\Gamma \)-semigroup and \(L, R \) its left and right operator semigroups respectively.

Definition 4.1 [2] Let \(S \) be a \(\Gamma \)-semigroup. Let us define a relation \(\rho \) on \(S \times \Gamma \) as : \((x, \alpha)\rho(y, \beta) \) if and only if \(x\alpha s = y\beta s \) for all \(s \in S \) and \(\gamma x\alpha = \gamma y\beta \) for all \(\gamma \in \Gamma \). Then \(\rho \) is an equivalence relation. Let \([x, \alpha] \) denote the equivalence class containing \((x, \alpha) \). Let \(L = \{[x, \alpha] : x \in S, \alpha \in \Gamma\} \). Then \(L \) is a semigroup with respect to the multiplication defined by \([x, \alpha][y, \beta] = [x\alpha y, \beta] \). This semigroup \(L \) is called the left operator semigroup of the \(\Gamma \)-semigroup \(S \).

Dually the right operator semigroup \(R \) of \(\Gamma \)-semigroup \(S \) is defined where the multiplication is defined by \([\alpha, a][\beta, b] = [aa\beta, b] \).

Definition 4.2 For a fuzzy subset \(\mu \) of \(R \) we define a fuzzy subset \(\mu^{*} \) of \(S \) by \(\mu^{*}(a) = \inf_{\gamma \in \Gamma} \mu(\gamma, a) \), where \(a \in S \). For any subset \(\sigma \) of \(S \) we define a fuzzy subset \(\sigma^{*} \) of \(R \) by \(\sigma^{*}(\alpha, a) = \inf_{s \in S} \sigma(saa) \), where \(\alpha, a \in R \). For a fuzzy subset \(\delta \) of \(L \), we define a fuzzy subset \(\delta^{+} \) of \(S \) by \(\delta^{+}(a) = \inf_{\gamma \in \Gamma} \delta([a, \gamma]) \) where \(a \in S \).

For any fuzzy subset \(\eta \) of \(S \) we define a fuzzy subset \(\eta^{+} \) of \(L \) by \(\eta^{+}(\alpha, a) = \inf_{s \in S} \eta(saa) \), where \(\alpha, a \in L \).

Lemma 4.3 [7] If \(\mu \) is a fuzzy subset of \(R \), then \((\mu_{t})^{*} = (\mu^{*})_{t} \) where \(t \in Im(\mu) \), provided the sets are non-empty.

Lemma 4.4 [7] If \(\sigma \) is a fuzzy subset of \(S \), then \((\sigma_{t})^{*} = (\sigma^{*})_{t} \) where \(t \in Im(\sigma) \), provided the sets are non-empty.

Proposition 4.5 Suppose \(\mu \) is a fuzzy prime ideal of \(R \). Then \(\mu^{*} \) is a fuzzy prime ideal of \(S \).

Proof. Since \(\mu \) is a fuzzy prime ideal of \(R \), \(\mu_{t} \) is a prime ideal of \(R[6] \) \(\forall t \in Im(\mu) \). Hence \((\mu_{t})^{*} \) is a prime ideal of \(S[2] \). Now \((\mu_{t})^{*} \) and \((\mu^{*})_{t} \) are non-empty. Hence \((\mu_{t})^{*} = (\mu^{*})_{t} \)(cf. Lemma 4.3). This gives \((\mu^{*})_{t} \) is a prime ideal of \(S \) for all \(t \in Im(\mu) \). Hence \(\mu^{*} \) is a fuzzy prime ideal of \(S \)(cf. Theorem 3.3). \(\blacksquare \)
Proposition 4.6 Suppose \(\sigma \) is a fuzzy prime ideal of \(S \). Then \(\sigma^* \) is a fuzzy prime ideal of \(R \).

Proof. Since \(\sigma \) is a fuzzy prime ideal of \(S \), \(\sigma_t \) is a prime ideal of \(S \) \(\forall t \in \text{Im}(\sigma) \) (cf. Theorem 3.3). Hence \((\sigma_t)^* \) is a prime ideal of \(R[2] \). Also \((\sigma_t)^* \) and \((\sigma^*)_t \) are non-empty. So \((\sigma_t)^* = (\sigma^*)_t \) (cf. Lemma 4.4), \((\sigma^*)_t \) is a prime ideal of \(R \) for all \(t \in \text{Im}(\mu) \). Consequently \(\sigma^* \) is a fuzzy prime ideal of \(R[6] \).

Remark: The left operator analogous of the above two propositions are also true.

Theorem 4.7 Let \(S \) be a \(\Gamma \)-semigroup and \(R \) be its right operator semigroup. Then there exist an inclusion preserving bijection \(\mu \mapsto \mu^* \) between the set of all fuzzy prime ideals of \(R \) and set of all fuzzy prime ideals of \(S \), where \(\mu \) is a fuzzy prime ideal of \(R \).

Proof. Let \(x \in S \). Then \((\mu^*)^*[\alpha, x] = \inf_{s \in S} \mu^*[\alpha, x] = \inf_{s \in S} \mu(s \alpha x) \geq \mu(x) \) (since \(\mu \) is a fuzzy ideal). Again for \(x \in S \), \((\mu^*)^*[\alpha, x] = \inf_{s \in S} \mu(s \alpha x) = \inf_{s \in S} \mu(\alpha x) \) (since \(\mu \) is a fuzzy prime ideal) \(\leq \max(\mu(x), \mu(x)) = \mu(x) \).

Thus we see that \((\mu^*)^* = \mu \). Hence the mapping is one-one. Now for \([\alpha, x] \in R \), \((\mu^*)^*[\alpha, x] = \inf_{s \in S \beta \in \Gamma} \mu^*[\alpha, x] = \inf_{s \in S \beta \in \Gamma} \mu(\beta, s)[\alpha, x] \geq \mu([\alpha, x]) \).

Hence \(\mu \subseteq (\mu^*)^* \). Since \(\mu \) is a fuzzy prime ideal, \(\mu([\alpha, x], [\beta, s]) = \max(\mu([\alpha, x], [\beta, s])) \forall s \in S \) and \(\forall \beta \in \Gamma \). Hence for \(s = x \) and \(\beta = \alpha \), \(\mu([\alpha, x], [\beta, s]) = \mu([\alpha, x]) \). This together with the relation \((\mu^*)^*[\alpha, x] = \inf_{s \in S \beta \in \Gamma} \mu([\alpha, x], [\beta, s]) \) gives \((\mu^*)^*[\alpha, x] \leq \mu([\alpha, x]) \) for all \([\alpha, x] \in R \). This means \((\mu^*)^* \subseteq \mu \). Thus we see that \(\mu = (\mu^*)^* \). This proves that the mapping is onto. Now let \(\mu_1, \mu_2 \in FI(S) \) be such that \(\mu_1 \subseteq \mu_2 \). Then for all \([\alpha, x] \in R \), \(\mu_1^*([\alpha, x]) = \inf_{s \in S} \mu_1(s \alpha x) \leq \inf_{s \in S} \mu_2(s \alpha x) = \mu_2^*([\alpha, x]) \). Thus \(\mu_1^* \subseteq \mu_2^* \). Similarly we can show that if \(\mu_1 \subseteq \mu_2 \) where \(\mu_1, \mu_2 \in FI(R)(FLI(R)) \) then \(\mu_1^* \subseteq \mu_2^* \). Hence \(\mu \mapsto \mu^* \) is an inclusion preserving bijection.

Remark: Similar result holds for the \(\Gamma \)-semigroup \(S \) and the left operator semigroup \(L \) of \(S \).

Now we establish the following two lemmas to deduce the inclusion preserving bijections between the set of all prime ideals of a \(\Gamma \)-semigroup and that of its operator semigroups with the fuzzy notions of \(\Gamma \)-semigroups.

Lemma 4.8 Let \(I \) be an ideal, \(\mu \) a fuzzy ideal of a \(\Gamma \)-semigroup \(S \) and \(R \) the right operator semigroup of \(S \). Then \((\mu_I)^* = \mu_{I^*} \), where \(\mu_I \) is the characteristic function of \(I \).
Prime ideals of Γ-semigroups

Proof. Let $[\beta, y] \in R$. Then $(\mu_I)^s([\beta, y]) = \inf_{s \in S} \mu(s\beta y)$. Suppose $[\beta, y] \in I^s$. Then $s\beta y \in I$ for all $s \in S$. Hence $\mu_I(s\beta y) = 1$ for all $s \in S$. This gives $\inf_{s \in S} \mu(s\beta y) = 1$ whence $(\mu_I)^s([\beta, y]) = 1$. Also $\mu_{I^s}([\beta, y]) = 1$. Hence $(\mu_I)^s([\beta, y]) = \mu_{I^s}([\beta, y])$. Suppose $[\beta, y] \notin I^s$. Then for some $t \in S$, $t\beta y \notin I$. So $\mu_I(t\beta y) = 0$. This gives $\inf_{s \in S} \mu_I(s\beta y) = 0$ i.e., $(\mu_I)^s([\beta, y]) = 0$. Again $\mu_{I^s}([\beta, y]) = 0$. Thus in this case also $(\mu_I)^s([\beta, y]) = \mu_{I^s}([\beta, y])$. Hence $(\mu_I)^s = \mu_{I^s}$. ■

Similar is the proof of the following lemma.

Lemma 4.9 Let I be a (left) ideal of the right operator semigroup R of a Γ-semigroup S. Then $(\lambda_I)^+ = \lambda_{I^+}$, where λ_I denotes the characteristic function of I.

Remark 4.10 Dually we can deduce for left operator semigroup L of the Γ-semigroup S, (i) $(\lambda_I)^+ = \lambda_{I^+}$, (ii) $(\lambda_I)^+ = \lambda_{I^+}$, where λ_I denotes the characteristic function of I.

Theorem 4.11 [2] Let S be a Γ-semigroup (not necessarily with unities). Then there exists an inclusion preserving bijection between the set of all prime ideals of S and that of its right operator semigroup R via the mapping $I \rightarrow I^s$.

Proof. Let us denote the mapping $I \rightarrow I^s$ by ϕ. This is actually a mapping follows from dual of Lemma 3.12[2]. Now let $\phi(I_1) = \phi(I_2)$. Then $I_1^s = I_2^s$. This implies that $\lambda_{I_1^s} = \lambda_{I_2^s}$. (where λ_I is the characteristic function I.) Hence by Lemma 4.8, $(\lambda_{I_1})^s = (\lambda_{I_2})^s$. This together with Theorem 4.7 gives $\lambda_{I_1} = \lambda_{I_2}$ whence $I_1 = I_2$. Consequently ϕ is one-one. Let I be a prime ideal of R. Then its characteristic function λ_I is a fuzzy prime ideal of R. Hence by Theorem 4.7, $((\lambda_I)^s)^s = \lambda_I$. This implies that $\lambda_{(I^s)^s} = \lambda_I$. Let I_1, I_2 be two prime ideals of S with $I_1 \subseteq I_2$. Then $\lambda_{I_1} \subseteq \lambda_{I_2}$. Hence by Theorem 4.7, we see that $(\lambda_{I_1})^s \subseteq (\lambda_{I_2})^s$ i.e., $\lambda_{I_1^s} \subseteq \lambda_{I_2^s}$. (cf. Lemma 4.8) which gives $I_1^s \subseteq I_2^s$. ■

Remark: The result similar to the above for the left operator semigroup L of the Γ-semigroup S can be deduced by the Remark 4.10 and Theorem 4.7.

Acknowledgement: We are grateful to Prof. Tapan Kumar Dutta, Department of Pure Mathematics, University of Calcutta, for his valuable suggestions and constant encouragement for this work.
References

Received: March, 2009