Decomposition Properties of Sober Topologies on the Same Sets1

Luoshan Xu

Department of Mathematics, Yangzhou University
Yangzhou 225002, P. R. China
luoshanxu@yahoo.com, luoshanxu@hotmail.com

Zhenyan Yuan

Department of Mathematics, Suqian Teachers College
Suqian 223800, P. R. China

Abstract

In this paper, decomposition properties of sober topologies on the same sets are concerned. Main results are: (1) The supremum of a family of sober topologies on the same set with the same closures on every singletons remains a sober topology; (2) The supremum of a family of T_1 and sober topologies on the same set is still a T_1 and sober topology; (3) The supremum of a directed family of sober topologies on the same set remains a sober topology. Some subtle (counter)examples are also constructed to show that the supremum of two sober topologies on the same set may not be a sober one.

Keywords: topological space; sober topology; decomposition; supremum

1 Introduction

Topology (cf. [1]), one of the most important subjects in mathematics, provides mathematical tools and interesting topics in various subjects. Soberity, a special separation property of topological spaces, plays an important role in studying continuous lattices and domains (cf. [2, 3, 4]). Some properties for soberity have been established. It is known that every continuous domain with

1Supported by the NSF of China (10371106, 60774073).
the Scott topology (an intrinsic topology of posets) is a sober space. It has been proved that finite products, saturated subspaces, closed subspaces and retracts of sober spaces are all sober spaces. Since the family of all topologies on a set forms a complete lattice, a question naturally arises: are the sups of sober topologies on the same sets are all still sober ones? The answer to this question is generally negative. This paper will carry on deeper and detailed studies on this topic. We will show the following theorems: (1) The supremum of a family of sober topologies on the same set with the same closures on every singletons remains a sober topology; (2) The supremum of a family of T_1 and sober topologies on the same set is still a T_1 and sober topology; (3) The supremum of a directed family of sober topologies on the same set remains a sober topology. In terms of the usual topology of \mathbb{R}, a counterexample of T_1+sober topological space which is not T_2 is constructed, showing that T_2 is strictly stronger than T_1+sober. We will also construct an example to show that the supremum of two sober topologies on the same set may not be a sober one.

The rest of this paper is organized as follows. Section 2 introduces fundamental concepts and presents basic facts of topological spaces. Section 3 gives some decomposition properties of sober topologies on the same sets. In section 4, some subtle and important (counter)examples are constructed.

2 Preliminaries

We recall notations and facts related to topological spaces and posets that are used in the sequel. Other used but not stated basic concepts please refer to [1, 2].

Let (X, τ) be a topological space. The closure of a subset A of X is denoted by \overline{A} or A^-. When a family of topologies τ_i ($i \in J$) on the same set X is concerned, we will use \overline{A}^i to denote the closure of A in the topological space (X, τ_i) ($i \in J$). A topological space X is a T_0-space is characterized by that $x \neq y$ implies $\{x\}^- \neq \{y\}^-$ for any $x, y \in X$. A topological space is a T_1 space iff every of its singletons is closed. A T_2 space means a topological space in which any pair of distinct elements have disjoint open neighborhoods. It is well-known that for topological spaces, T_2 implies T_1 and T_1 implies T_0.

Definition 2.1. (cf. [2]) Let (X, τ) be a topological space. A non-empty subset A of X is called irreducible if $A \subseteq B \cup C$ for all closed sets B and C implies $A \subseteq B$ or $A \subseteq C$.

Lemma 2.2. (cf. [2]) A non-empty subset A of a topological space X is irreducible iff its closure \overline{A} is irreducible.

Definition 2.3. (cf. [2]) A topological space X is sober if for every irreducible closed set C there is a unique element $x \in X$ such that $\{x\} = C$.

It is easy to see that $\forall x \in X, \overline{\{x\}}$ is a irreducible closed set, and thus every sober space must be a T_0 space.

Proposition 2.4. Let (X, τ_1) and (X, τ_2) be topological spaces on the same set X. Let $\tau_1 \subseteq \tau_2$ and $A \subseteq X$. Then

1. $\overline{A}^2 \subseteq \overline{A}^1$.
2. If A is irreducible in (X, τ_2), then A is also irreducible in (X, τ_1).

Proof. Straightforward. \qed

Definition 2.5. Let P be a poset. Then

(i) A non-empty subset D of P is called directed, if every pair of elements of D has an upper bound in D.

(ii) Poset P is called a dcpo if every its directed subset has the least upper bound.

(iii) A subset U of P is called Scott open if U is an upper set and for all directed subset D of P with existing $\sup D \in U$, one has $D \cap U \neq \emptyset$. All the Scott open sets of P form a topology, called the Scott topology and denoted by $\sigma(P)$.

Definition 2.6. (cf. [2]) The specialization order \leq_s on a topological space X is defined for all $x, y \in X$, $x \leq_s y$ iff $x \in \overline{\{y\}}$.

Remark 2.7. Let (X, τ) be a topological space. Then

(i) The specialization order \leq_s is a preorder on X. If (X, τ) is a T_0 space, then \leq_s is a partial order on X. If (X, τ) is a sober space, then (X, \leq_s) is a dcpo.

(ii) It follows from the definition of the specialization order that for all $y \in X$, $\{y\}^- = \downarrow y$.

3 Decomposition Theorems of Sober Topologies

Recall that a topology of a sober space is called a sober topology.
Proposition 3.1. Let τ_i ($i \in J$) be a family of sober topologies on the same set X. If $\forall x \in X$ and $i \in J$, $\bar{x} = \bar{x}^i$, then the supremum topology $\tau = \bigvee \tau_i$ generated by the subbase $\bigcup \tau_i$ is a sober topology on X, where \bar{x}^i is the closure of $\{x\}$ in space (X, τ_i).

Proof. Let F be an irreducible closed set in (X, τ). Then F is an irreducible set in (X, τ_i) $(i \in J)$. By Lemma 2.2, F^i is an irreducible closed set in (X, τ_i) $(i \in J)$. Since (X, τ_i) is sober, there is a unique x_i such that $F^i = \{x_i\}^i$ $(i \in J)$. By the assumption that $\bigcap_{i} x_i = \{x\}$ and $F \subseteq F^i = \{x_i\}$, we have $F^k \subseteq \{x_i\} = \{x\} = F^i$ $(i, k \in J)$. This shows that $F^i = F^k = \{x_i\} = \{x_k\}$ $(i, k \in J)$. Thus the soberity of (X, τ_i) $(i \in J)$, we have a unique $x = x_i = x_k \in X$ $(i, k \in J)$. Next we show that $\{x\} = F$. On one hand, it follows from $\tau_i \subseteq \tau$ that $x \in \{x\} \subseteq \{x\} = F^i$. Since F is an irreducible closed set in (X, τ), F can be represented as $F = \bigcap_{i} F_i$ for some closed set F_i in (X, τ_i) $(i \in J)$. It follows from $F \subseteq F_i$ that $\{x\} = \{x\} = F^i \subseteq F_k$ $(i, k \in J)$. Thus $\{x\} \subseteq \{x\} \subseteq \bigcap_{i} F_i$. On the other hand, since $\{x\}$ is closed and irreducible in (X, τ), $\{x\}$ can be represented as $\{x\} = \bigcap_{i} C_i$ for some closed set C_i in (X, τ_i) $(i \in J)$. Then it follows from $x \in F \subseteq F^i = \{x\} \subseteq C_i$ $(i \in J)$ that $F \subseteq \bigcap_{i} C_i = \{x\}$. To sum up the above, and noticing that τ is clearly T_0, we have that there is a unique $x \in X$ such that $\{x\} = F$. So, τ is a sober topology on X.

Corollary 3.2. Let τ_i $(i \in J)$ be a family of T_1-sober topologies on the same set X. Then the supremum topology $\tau = \bigvee \tau_i$ generated by the subbase $\bigcup \tau_i$ is a T_1-sober topology on X.

Proof. It is clear that τ is T_1. Since topologies τ_i $(i \in J)$ are T_1, $\forall x \in X$ and $i \in J$, $\bar{x} = \{x\} = \bar{x}^i$. Thus, by Proposition 3.1, (X, τ) is also sober.

Lemma 3.3. (cf. [5]) A topological space is a T_1-sober space iff its irreducible closed sets are all singletons.

Proof. Straightforward.

Proposition 3.4. Let τ be a T_1-sober topology and $\tau^* \supseteq \tau$ be a topology on the same set X. Then τ^* is a sober topology.

Proof. Topology τ^* is T_1 is clear. By Lemma 3.3, we need to show that irreducible closed sets are singletons. Let F be an irreducible closed set in (X, τ^*). Then by Proposition 2.4, F is an irreducible set in (X, τ). By Lemma 2.2, we have that the closure of F in (X, τ) is an irreducible closed set. Thus by Lemma 3.3, (the closure of) F is a singleton.
Proposition 3.5. Let τ_i $(i \in J)$ be a directed family of sober topologies on the same set X. Then the supremum topology $\tau = \bigvee \tau_i$ generated by the subbase $\bigcup \tau_i$ is a sober topology.

Proof. Let F be an irreducible closed set in (X, τ). Then F is irreducible in (X, τ_i) $(i \in J)$. By Lemma 2.2, \mathcal{F} is an irreducible closed set in (X, τ_i) $(i \in J)$. Since (X, τ_i) is sober, there is a unique x_i such that $\mathcal{F}_i = \{x_i\}$ $(i \in J)$. By the directedness of the family τ_i $(i \in J)$, we have that for all $i, j \in J$, there is $k \in J$ such that $\tau_i, \tau_j \subseteq \tau_k$. Thus, $F \subseteq \mathcal{F}_k = \{x_k\}$ and $\{x_i\} \subseteq \mathcal{F}_k$. By Proposition 2.4, we have that $x_k \in \{x_k\} = \mathcal{F}_k \subseteq \mathcal{F}$ and $\{x_i\} \subseteq \mathcal{F}$. These show that $\mathcal{F}_i = \{x_i\} = \{x_k\}$ and similarly, $\mathcal{F}_j = \{x_j\} = \{x_k\}$. Thus by the soberness of (X, τ_i) $(i \in J)$, we have $x_i = x_j$ $(\forall i, j \in J)$. Let $x = x_i = x_j$ $(i, j \in J)$. Next we show that $\{x\} = \mathcal{F}$. On one hand, it follows from $\tau_i \subseteq \tau$ and Proposition 2.4 that $x \in \{x\} = \mathcal{F}$. Since F is an irreducible closed set in (X, τ), F can be represented as $F = \bigcap_{i \in J} F_i$ for some closed set F_i in (X, τ_i) $(i \in J)$. It follows from $F \subseteq F_i$ and $x \in \{x\} = \mathcal{F}_i \subseteq F_i$ $(i \in J)$ that $x \in \bigcap_{i \in J} F_i = F$. Thus $\{x\} = \mathcal{F}$. On the other hand, since $\{x\} = \mathcal{F}$ is closed and irreducible in (X, τ), $\{x\}$ can be represented as $\{x\} = \bigcap_{i \in J} C_i$ for some closed set C_i in (X, τ_i) $(i \in J)$. Then it follows from $x \in F \subseteq \mathcal{F}_i = \{x\} \subseteq C_i$ $(i \in J)$ that $F \subseteq \bigcap_{i \in J} C_i = \{x\}$. To sum up the above, and noticing that τ is clearly T_0, we have that there is a unique $x \in X$ such that $\{x\} = \mathcal{F}$. So, τ is a sober topology on X. \qed

Corollary 3.6. Let τ_i $(i \in J)$ be a directed family of sober topologies on the same set X. If $\tau = \bigcup \tau_i$ is a topology, then τ is a sober topology on X.

Proof. If $\tau = \bigcup \tau_i$ is a topology, then $\bigcup \tau_i$ is equal to the supremum topology $\bigvee \tau_i$ generated by the subbase $\bigcup \tau_i$. By Proposition 3.5, (X, τ) is sober. \qed

4 Some examples

The first example shows that supremum of two sober topologies on the same set may fail to be a sober one, showing that the directedness in Proposition 3.5 can not be removed.

Example 4.1. Let P be the poset of natures augmented two maximal elements a, b to the top. Then the Scott topology $\sigma(P)$ on P is not sober. Let $\tau_a = \sigma(P) - \{\{a\}, \{a, b\}\}$. Then τ_a is a sober topology on P and so is topology $\tau_b = \sigma(P) - \{\{b\}, \{a, b\}\}$. It is easy to see that $\sigma(P) = \tau_a \vee \tau_b$ is not sober.
Next example shows that some union of a directed family of sober topologies on the same set X may fail to be a topology, showing that the assumption of Corollary 3.6 is needed.

Example 4.2. Let $X = [0, 1]$. For all $a \in [0, 1)$, let τ_a be the topology generated by base $\mathcal{P}([0, a]) \cup \sigma((a, 1])$. Noticing that $(0, 1]$ is a continuous domain, we have that $\sigma((a, 1])$ is a sober topology on $(a, 1]$. Then it is easy to show that τ_a is a sober topology on $[0, 1]$. If $a \leq b$, then $\tau_a \subseteq \tau_b$. So the family τ_a ($a \in [0, 1)$) is a directed family of sober topologies on X. It is easy to see that $[0, 1)$ is not τ_a-open for all $a \in [0, 1)$. However $[0, 1)$ is open in $(X, \bigvee_{a \in [0, 1)} \tau_a)$. This deduces that $\bigcup_{a \in [0, 1)} \tau_a$ is not a topology.

Every T_2 spaces is a T_1+sober space. And T_1+sober spaces share almost all known topological properties that T_2 spaces have (cf. [5]). However, the following example shows that T_2 is strictly stronger than T_1+sober.

Example 4.3. Let (\mathbb{R}, τ) be the real number space. Let $\tau^* = \{U \in \tau \mid U$ is a dense subset in $(\mathbb{R}, \tau)\} \cup \{\emptyset\}$. Then (\mathbb{R}, τ^*) is T_1+sober but not T_2.

It is a routing work to show that τ^* is a topology on \mathbb{R}. And it is clear that τ^* is T_1 but not T_2. To show (\mathbb{R}, τ^*) is T_1+sober, by Lemma 3.3, we need only to show irreducible closed sets in (\mathbb{R}, τ^*) are all singletons. Suppose that F is an irreducible closed sets in (\mathbb{R}, τ^*) with more than two distinct elements $x, y \in F$ and $x < y$. It is clear by irreducibility of F that $F \neq \mathbb{R}$. Since $\mathbb{R} - F$ is dense and the interval $(x, y]$ is open in (\mathbb{R}, τ), there is some $z \in (x, y] \cap (\mathbb{R} - F)$. Then $F_1 = (-\infty, z] \cap F$ and $F_2 = [z, \infty) \cap F$ are two closed subsets in (\mathbb{R}, τ^*) and $F = F_1 \cup F_2$, but $F_1 \neq F \neq F_2$, a contradiction! This contradiction reveals that irreducible closed sets in (\mathbb{R}, τ^*) are all singletons. So, by Lemma 3.3, (\mathbb{R}, τ^*) is a T_1+sober space but not a T_2 space.

References

Received: February, 2009