Notes on Maximal Ideals
Relative to a Filter

Guanghao Jiang
Department of Mathematics
Huaibei Coal Industry Teachers College
Huaibei 235000, P. R. China
guanghaoj@126.com

Abstract
In this paper, an intrinsic characterization of distributive lattices is obtained. In addition, we also give a characterization of pseudo primes in semicontinuous lattices.

Mathematics Subject Classification: 06A11; 06B35; 54H10

Keywords: maximal ideals relative to a filter, prime ideals, semiprime ideals, distributive lattices, semicontinuous lattices

1 Introduction and Preliminaries

The study of semiprime ideals was begun in [5] by Y. Ray. The theory of semicontinuous lattices was first developed by D. Zhao in [1]. In this paper, we manage to give an intrinsic characterizations of distributive lattices. A characterization of pseudo primes in semicontinuous lattices is also obtained.

The following are some basic concepts needed in the sequel, other non-explicitly stated elementary notions please refer to [1], [3] and [6].

An ideal on a partially ordered set (in short, poset) \(L \) means a lower set which is also directed, and a filter on a poset can be dually defined. For a semilattice \(L \), a proper ideal \(I \) of \(L \) is called a prime ideal if for any two elements \(a, b \) of \(L \), \(a \land b \in I \) implies \(a \in I \) or \(b \in I \). For a lattice \(L \), an ideal \(I \) of \(L \) is called a semiprime ideal if for any three elements \(a, b, c \) of \(L \), the relations \(a \land b \in I, a \land c \in I \) always imply \(a \land (b \lor c) \in I \). The set of semiprime
ideals of L is denoted by $Rd(L)$. It is easy to see that every prime ideal is semiprime in a lattice.

Recall that in a complete lattice L, for $x, y \in L$, we say that $x \preceq y$, if for any $I \in Rd(L)$, $y \leq \bigvee I$ always implies $x \in I$. For any $x \in L$, let $\downarrow x = \{ y \in L : y \preceq x \}$ and $\uparrow x = \{ y \in L : x \preceq y \}$. A complete lattice L is said to be semicontinuous lattice if for each $x \in L$, $x \leq \bigvee \downarrow x$.

2 Main Results

In this section, we shall give an intrinsic characterization of distributive lattices. A characterization of pseudo primes in the case of semicontinuous lattices will be obtained.

Lemma 2.1. (see [4]) Let L be a sup-semilattice. Let $I \in Idl L$, $F \in Filt L$ and $I \cap F = \emptyset$. Then I is a maximal ideal relative to filter F iff for all $x \in L \setminus I$, there are $y \in F$ and $a \in I$ s.t. $y \leq x \lor a$.

Theorem 2.2. Let M be a semiprime ideal on a lattice. If M is a maximal ideal relative to a filter, then M is a prime ideal.

Proof. Let L be a lattice. Let M be a maximal ideal relative to filter F and $M \cap F = \emptyset$. Suppose there are $a, b \in M$ s.t. $a \land b \in M$ but $a \not\in M$ and $b \not\in M$. By Lemma 2.1, there are $u, v \in F$, $c, d \in M$ s.t. $u \leq a \lor c$, $v \leq b \lor d$, respectively. Since F is a filter, $a \lor c$, $b \lor d \in F$ and $(a \lor c) \land (b \lor d) \in F$.

Noticing that $c, d \in M$ and M is a semiprime ideal, we have $a \land b \in M$, $a \land d \in M$ and $a \land (b \lor d) \in M$; and also $c \land b \in M$, $c \land d \in M$ and $c \land (b \lor d) \in M$. It follows from M is a semiprime ideal that $(a \lor c) \land (b \lor d) \in M$. This shows that $(a \lor c) \land (b \lor d) \in M \cap F \neq \emptyset$, a contradiction! Hence, M is a prime ideal. \qed

This theorem shows that the similar result may be obtained in the non-distributive case. An example is given by Figure 1 to show that maximal ideals relative to a filter may be prime ideals in the non-distributive case, where $I = \{ a, b, c, d, 0 \}$ is a maximal ideal relative to filter $L \setminus I$ and a prime ideal but L is not a distributive lattice.

By Figure 1, we find that there exists a maximal ideal $\downarrow b$ relative to filter $\uparrow a$ but not a semiprime ideal in the non-distributive lattice L.

Lemma 2.3. (see [4]) Let L be a poset, $I \in Idl L$, $F \in Filt L$ and $I \cap F = \emptyset$. Then there always exists a maximal ideal M relative to filter F s.t. $M \cap F = \emptyset$ and $M \supseteq I$.

![Figure 1](image-url)
Theorem 2.4. If maximal ideals relative to a filter on a lattice L are all semiprime ideals, then L is a distributive lattice.

Proof. Let L be a lattice and $a, b, c \in L$. Let $x = a \wedge (b \vee c)$ and $y = (a \wedge b) \vee (a \wedge c)$. It is trivial that $x \geq y$. On the other hand, suppose that $x \not\leq y$. Then $\uparrow x \cap \downarrow y = \emptyset$. By Lemma 2.3, there exists a maximal ideal M relative to filter $\uparrow x$ s.t. $M \cap \uparrow x = \emptyset$ and $M \supseteq \downarrow y$. Thus $x \notin M$ and $y \in M$. Since M is a semiprime ideal, $a \wedge b \in M, a \wedge c \in M$ and $x = a \wedge (b \vee c) \in M$, a contradiction! Hence $x \leq y$, and thus L is distributive.

Corollary 2.5. If maximal ideals on a lattice L are all semiprime ideals, then L is a distributive lattice.

By Theorem 2.4, Corollary 2.5 and the fact that maximal ideals relative to a filter on a distributive lattice are all prime ideals (see [4]), we have an intrinsic characterization of distributive lattices.

Theorem 2.6. Let L be a lattice. Then the following conditions are equivalent:

1. L is a distributive lattice;
2. Maximal ideals relative to a filter on L are all prime ideals;
3. Maximal ideals relative to a filter on L are all semiprime ideals;
4. Maximal ideals on L are all semiprime ideals;
5. Maximal ideals on L are all prime ideals.

Recall that an element p of a poset L is called pseudo prime element if $p = \bigvee P$ for some prime ideal P. All the pseudo prime elements of L is denoted by $\psi_{\text{PRIME}} L$.

Now we give the following characterization of pseudo primes in semicontinuous lattices.

Lemma 2.7. ([3]) Let L be a distributive lattice, I an ideal and F a filter in L with $I \cap F = \emptyset$. Then there is a prime ideal P in L with $P \supseteq I$ and $P \cap F = \emptyset$.

Theorem 2.8. Let L be a complete lattice and $1 \neq p \in L$. Consider the following statements:

1. p is pseudo prime;
2. In any finite collection $x_1, x_2, \cdots, x_n \in L$ with $x_1 \wedge x_2 \wedge \cdots \wedge x_n \leq p$ there is one of the elements with $x_j \leq p$;
3. The filter generated by $L \backslash \downarrow p$ does not meet $\downarrow p$.

Then (1) \Rightarrow (2) and (2) \Leftrightarrow (3); if L is in addition distributive semicontinuous, all three statements are equivalent.
Proof. Condition (2) says that no finite meet of elements from $L \downarrow p$ is ever $\ll p$. Therefore (2) and (3) are always equivalent.

(1) implies (2): Let p be pseudo prime and suppose that $x_1 \land x_2 \land \cdots \land x_n \ll p$. Let P be a prime ideal with $\bigvee P = p$. Since every prime ideal is semiprime, $P \in Rd(L)$, thus $x_1 \cdots x_n \in P$. Since P is prime, there is one $j \in \{1, 2, \cdots, n\}$ with $x_j \in P \subseteq \downarrow p$. That is, $x_j \leq p$.

(3) implies (1): Suppose that L is semicontinuous. Let F be the filter generated by $L \downarrow p$, then $L \downarrow p \subseteq F$ and $F \cap \downarrow p = \emptyset$. By Lemma 2.7, there exists a prime ideal P with $P \supseteq \downarrow p$ and $P \cap F = \emptyset$. Since that $L \downarrow p \subseteq F$, we have $P \subseteq L \downarrow p \subseteq \downarrow p$. Since L is semicontinuous, $p \leq \bigvee \downarrow p \leq \bigvee P \leq \bigvee \downarrow p = p$. Thus $p = \bigvee P$ is pseudo prime.

References

Received: January, 2009